Phycobilisomes are protein complexes that harvest light and transfer energy to the photo system. Here, the three dimensional structure of intact phycobilisomes from Nostoc flagelliforme is studied by a combination of negative stain electron microscopy and cryo-electron microscopy. Results show that the intact phycobilisomes are composed of a tricylindrical core and six rods. Each allophycocyanin cylinder presents a double-layered structure when viewed from the side and a triangular shape when viewed from the top. These characteristics indicate that allophycocyanin trimers in the intact phycobilisomes are arranged into hexameric oligomers in a parallel manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2005.05.033 | DOI Listing |
Nat Commun
October 2024
Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
αβ T cell receptors (αβTCRs) co-recognise antigens when bound to Major Histocompatibility Complex (MHC) or MHC class I-like molecules. Additionally, some αβTCRs can bind non-MHC molecules, but how much intact antigen reactivities are achieved remains unknown. Here, we identify an αβ T cell clone that directly recognises the intact foreign protein, R-phycoerythrin (PE), a multimeric (αβ)γ protein complex.
View Article and Find Full Text PDFPhotosynth Res
December 2024
Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
A widely discussed explanation for the prevalence of pairs or clusters of closely spaced electronic chromophores in photosynthetic light-harvesting proteins is the presence of ultrafast and highly directional excitation energy transfer pathways mediated by vibronic excitons, the delocalized optical excitations derived from mixing of the electronic and vibrational states of the chromophores. We discuss herein the hypothesis that internal conversion processes between exciton states on the <100 fs timescale are possible when the excitonic potential energy surfaces are controlled by the vibrational modes that induce charge transfer character in a strongly coupled system of chromophores. We discuss two examples, the peridinin-chlorophyll protein from marine dinoflagellates and the intact phycobilisome from cyanobacteria, in which the intramolecular charge-transfer (ICT) character arising from out-of-plane distortion of the conjugation of carotenoid or bilin chromophores also results in localization of the initially delocalized optical excitation on the vibrational timescale.
View Article and Find Full Text PDFFront Plant Sci
November 2023
Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary.
Phycobilisomes serve as a light-harvesting antenna of both photosystem I (PSI) and II (PSII) in cyanobacteria, yet direct energy transfer from phycobilisomes to PSI is not well documented. Here we recorded picosecond time-resolved fluorescence at wavelengths of 605-760 nm in isolated photosystem I (PSI), phycobilisomes and intact cells of a PSII-deficient mutant of sp. PCC 6803 at 77 K to study excitation energy transfer and trapping.
View Article and Find Full Text PDFPlant Cell Physiol
January 2024
Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Temesvári krt. 62, Szeged 6726, Hungary.
The spatial separation of photosystems I and II (PSI and PSII) is thought to be essential for efficient photosynthesis by maintaining a balanced flow of excitation energy between them. Unlike the thylakoid membranes of plant chloroplasts, cyanobacterial thylakoids do not form tightly appressed grana stacks that enforce strict lateral separation. The coexistence of the two photosystems provides a ground for spillover-excitation energy transfer from PSII to PSI.
View Article and Find Full Text PDFWater Res
October 2023
Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.
Anionic surfactants represented by linear alkylbenzene sulfonate (LAS) exhibit vertical heterogeneity of concentrations in aquatic environments owing to their amphiphilic structure. Field investigations showed that the concentration of anionic surfactants (mainly LAS) in the water surface microlayer (SML) of Lake Taihu reached 580 μg/L, higher than that in the lower layer. Floating Microcystis blooms overlap in space with the high concentration of anionic surfactants in SML.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!