Lake Van harbors the largest known microbialites on Earth. The surface of these huge carbonate pinnacles is covered by coccoid cyanobacteria whereas their central axis is occupied by a channel through which neutral, relatively Ca-enriched, groundwater flows into highly alkaline (pH approximately 9.7) Ca-poor lake water. Previous microscopy observations showed the presence of aragonite globules composed by rounded nanostructures of uncertain origin that resemble similar bodies found in some meteorites. Here, we have carried out fine-scale mineralogical and microbial diversity analyses from surface and internal microbialite samples. Electron transmission microscopy revealed that the nanostructures correspond to rounded aragonite nanoprecipitates. A progressive mineralization of cells by the deposition of nanoprecipitates on their surface was observed from external towards internal microbialite areas. Molecular diversity studies based on 16S rDNA amplification revealed the presence of bacterial lineages affiliated to the Alpha-, Beta- and Gammaproteobacteria, the Cyanobacteria, the Cytophaga-Flexibacter-Bacteroides (CFB) group, the Actinobacteria and the Firmicutes. Cyanobacteria and CFB members were only detected in surface layers. The most abundant and diverse lineages were the Firmicutes (low GC Gram positives). To the exclusion of cyanobacteria, the closest cultivated members to the Lake Van phylotypes were most frequently alkaliphilic and/or heterotrophic bacteria able to degrade complex organics. These heterotrophic bacteria may play a crucial role in the formation of Lake Van microbialites by locally promoting carbonate precipitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00792-005-0457-0 | DOI Listing |
Small
January 2025
College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, P. R. China.
Constructing heterojunctions between phase interfaces represents a crucial strategy for achieving excellent photocatalytic performance, but the absence of sufficient interface driving force and limited charge transfer pathway leads to unsatisfactory charge separation processes. Herein, a doping-engineering strategy is introduced to construct a In─N bond-bridged InS nanocluster modified S doped carbon nitride (CN) nanosheets Z-Scheme van der Waals (VDW) heterojunctions (InS/CNS) photocatalyst, and the preparation process just by one-step pyrolysis using the pre-coordination confinement method. Specifically, S atoms doping enhances the bond strength of In─N and forms high-quality interfacial In─N linkage which serves as the atomic-level interfacial "highway" for improving the interfacial electrons migration, decreasing the charge recombination probability.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India.
Herein, we investigated the carrier-phonon relaxation process in a two-dimensional (2D) BAPbBr perovskite and its heterostructure with MoS. Energy transfer was observed in the van der Waals heterostructure of 2D perovskite and monolayer MoS, leading to enhancement in the photoluminescence intensity of MoS. Femtosecond pump-probe spectroscopy was used to study the carrier and lattice dynamics of pristine 2D materials and their heterostructure.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland.
Importance: Blood culture (BC) use benchmarks in US hospitals have not been defined.
Objective: To characterize BC use in adult intensive care units (ICUs) and wards in US hospitals.
Design, Setting, And Participants: A retrospective cross-sectional study of BC use in adult medical ICUs, medical-surgical ICUs, medical wards, and medical-surgical wards from acute care hospitals from the 4 US geographic regions was conducted.
Public Health Pract (Oxf)
June 2025
School of Health and Life Sciences, Teesside University, Middlesbrough, UK.
Background: UK local authorities are developing and implementing Whole Systems Approaches to childhood obesity to tackle persistent and complex health inequalities. However, there is a lack of research on the practical application of these approaches. This paper reports on findings of a study into the initial implementation of this approach in Dundee, Scotland.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
Gestational diabetes mellitus (GDM), a transient form of diabetes that resolves postpartum, is a major risk factor for type 2 diabetes (T2D) in women. While the progression from GDM to T2D is not fully understood, it involves both genetic and environmental components. By integrating clinical, metabolomic, and genome-wide association study (GWAS) data, we identified associations between decreased sphingolipid biosynthesis and future T2D, in part through the allele of the gene in Hispanic women shortly after a GDM pregnancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!