Immediately following the formation of the Solar System, small planetary bodies accreted, some of which melted to produce igneous rocks. Over a longer timescale (15-33 Myr), the inner planets grew by incorporation of these smaller objects through collisions. Processes operating on such asteroids strongly influenced the final composition of these planets, including Earth. Currently there is little agreement about the nature of asteroidal igneous activity: proposals range from small-scale melting, to near total fusion and the formation of deep magma oceans. Here we report a study of oxygen isotopes in two basaltic meteorite suites, the HEDs (howardites, eucrites and diogenites, which are thought to sample the asteroid 4 Vesta) and the angrites (from an unidentified asteroidal source). Our results demonstrate that these meteorite suites formed during early, global-scale melting (> or = 50 per cent) events. We show that magma oceans were present on all the differentiated Solar System bodies so far sampled. Magma oceans produced compositionally layered planetesimals; the modification of such bodies before incorporation into larger objects can explain some anomalous planetary features, such as Earth's high Mg/Si ratio.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature03612 | DOI Listing |
Sci Rep
January 2025
Department of Geology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
Massive injection of C depleted carbon to the ocean and atmosphere coincided with major environmental upheaval multiple times in the geological record. For several events, the source of carbon has been attributed to explosive venting of gas produced when magmatic sills intruded organic-rich sediment. The concept mostly derives from studies of a few ancient sedimentary basins with numerous hydrothermal vent complexes (HTVCs) where craters appear to have formed across large areas of the seafloor at the same time, but good examples remain rare in strata younger than the Early Eocene.
View Article and Find Full Text PDFSci Rep
January 2025
Saudi Geological Survey, P.O Box: 54141, Jeddah, 21514, Kingdom of Saudi Arabia.
Recent reconnaissance geochemical investigations have unveiled Cryogenian magmatism linked to the compressional accretionary phase, contributing to the growth of the Afif Terrane in the eastern Arabian Shield. The Cryogenian Suwaj intrusive suite, within the Afif Terrane, displays a compositional range from gabbro-diorite to tonalite-granodiorite. The uniform compositional variation is primarily due to magmatic differentiation within parental magma across multiple pulses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Earth Sciences, University of Oregon, Eugene, OR 97403.
Volcanic provinces are among the most active but least well understood landscapes on Earth. Here, we show that the central Cascade arc, USA, exhibits systematic spatial covariation of topography and hydrology that are linked to aging volcanic bedrock, suggesting systematic controls on landscape evolution. At the Cascade crest, a locus of Quaternary volcanism, water circulates deeply through the upper [Formula: see text]1 km of crust but transitions to shallow and dominantly horizontal flow as rocks age away from the arc front.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Archaeology & Palaeoecology, School of Natural and Built Environment, Queen's University, Belfast BT9 3AZ, United Kingdom.
Polar ice cores and historical records evidence a large-magnitude volcanic eruption in 1831 CE. This event was estimated to have injected ~13 Tg of sulfur (S) into the stratosphere which produced various atmospheric optical phenomena and led to Northern Hemisphere climate cooling of ~1 °C. The source of this volcanic event remains enigmatic, though one hypothesis has linked it to a modest phreatomagmatic eruption of Ferdinandea in the Strait of Sicily, which may have emitted additional S through magma-crust interactions with evaporite rocks.
View Article and Find Full Text PDFSci Rep
January 2025
School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China.
In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!