Calcium is universally required for cell growth and proliferation. Calmodulin is the main intracellular receptor for calcium. Although calcium and calmodulin are well known to be required for cell cycle regulation, the target pathways for their action remain poorly defined. Potential targets include the calcium/calmodulin-dependent kinases (CaM-K). The aim of this study was to determine the role of the CaM-Ks on cell proliferation and progress through the cell cycle in breast cancer cells. CaM-KI inhibition with either KN-93 or specific interfering RNA (siRNA) caused an arrest in the cell cycle in the human breast cancer cell line, MCF-7. This arrest occurred in the G(1) phase of the cell cycle. Supporting this finding, CaM-K inhibition using KN-93 also resulted in a reduction of cyclin D1 protein and pRb phosphorylation when cells were compared with control cultures. Furthermore, inhibition of the upstream activator of CaM-KI, CaM-KK, using siRNA also resulted in cell cycle arrest. In summary, CaM-KK and CaM-KI participate in the control of the G(0)-G(1) restriction check point of the cell cycle in human breast cancer cells. This arrest seems due to an inhibition in cyclin D1 synthesis and a reduction in pRb phosphorylation. To the best of our knowledge, this is the first time that CaM-KK has been reported to be involved in mammalian cell cycle regulation and that CaM-Ks are regulating breast cancer cell cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-05-0271DOI Listing

Publication Analysis

Top Keywords

cell cycle
36
breast cancer
20
cell
12
human breast
12
cancer cells
12
cycle
9
calcium/calmodulin-dependent kinase
8
participate control
8
required cell
8
cycle regulation
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.

View Article and Find Full Text PDF

Introduction: Iron oxide nanozyme was synthesized from the fruit peel extract of pomegranate, which served as a reducing agent during the green synthesis. The scavenging of reactive oxygen species is often accompanied by immunomodulation following antiproliferative effects due to the crosstalk between the proteins involved in the inter-related signaling pathways.

Method: In the current study, the green synthesized nanozyme was studied for its ability to induce apoptosis in breast cancer cell lines.

View Article and Find Full Text PDF

CDK2 plays a pivotal role in controlling the cell cycle progression in eukaryotes and for this reason, it has been the subject of several studies for suitable inhibitors in the last decades. But more than 30 years of basic research have not generated an inhibitor as marketed drugs. Some inhibitors are to date in early phase clinical development.

View Article and Find Full Text PDF

Cellular senescence (CS) is a state of irreversible cell cycle arrest, and the accumulation of senescent cells contributes to age-associated organismal decline. The detrimental effects of CS are due to the senescence-associated secretory phenotype (SASP), an array of signaling molecules and growth factors secreted by senescent cells that contribute to the sterile inflammation associated with aging tissues. Recent studies, both in vivo and in vitro, have highlighted the heterogeneous nature of the senescence phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!