Ovariectomized mice bearing tumor xenografts grown from aromatase-transfected estrogen receptor (ER)-positive human breast cancer cells (MCF-7Ca) were injected s.c. with 10 microg/d letrozole for up to 56 weeks. Western blot analysis of the tumors revealed that ERs (ERalpha) were increased at 4 weeks but decreased at weeks 28 and 56. Expression of erbB-2 and p-Shc increased throughout treatment, whereas growth factor receptor binding protein 2 (Grb2) increased only in tumors proliferating on letrozole (weeks 28 and 56). In cells isolated from tumors after 56 weeks and maintained as a cell line (LTLT-Ca) in 1 micromol/L letrozole, ERalpha was also decreased whereas erbB-2, adapter proteins (p-Shc and Grb2), and the signaling proteins in the mitogen-activated protein kinase (MAPK) cascade were increased compared with MCF-7Ca cells. Growth was inhibited in LTLT-Ca cells but not in MCF-7Ca cells treated with MAPK kinase 1/2 inhibitors U0126, and PD98059 (IC(50) approximately 25 micromol/L). PD98059 (5 micromol/L) also reduced MAPK activity and increased ERalpha to the levels in MCF-7Ca cells. Epidermal growth factor receptor kinase inhibitor, gefitinib (ZD1839) inhibited growth of LTLT-Ca cells (IC(50) approximately 10 micromol/L) and restored their sensitivity to tamoxifen and anastrozole. In xenografts, combined treatment with ER down-regulator fulvestrant and letrozole, prevented increases in erbB-2 and activation of MAPK and was highly effective in inhibiting tumor growth throughout 29 weeks of treatment. These results indicate that blocking both ER- and growth factor-mediated transcription resulted in the most effective inhibition of growth of ER-positive breast cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-04-4502DOI Listing

Publication Analysis

Top Keywords

mcf-7ca cells
12
cells
9
mitogen-activated protein
8
protein kinase
8
breast cancer
8
cancer cells
8
cells mcf-7ca
8
letrozole weeks
8
growth factor
8
factor receptor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!