Meningioma transcript profiles reveal deregulated Notch signaling pathway.

Cancer Res

Brain Tumor Research Center, Department of Neurological Surgery, University of California, San Francisco, California 94143, USA.

Published: June 2005

Meningiomas constitute the second most common central nervous system tumor, and yet relatively little is known about the molecular events that are important for the pathogenesis and malignant progression of these tumors. We have used serial analysis of gene expression to compare the transcriptomes of nonneoplastic meninges and meningiomas of all malignancy grades. A novel finding from this screen is the induction of three components of the Notch signaling pathway: the transcription factor, hairy and enhancer of Split1 (HES1) and two members of the Groucho/transducin-like enhancer of Split family of corepressors, TLE2 and TLE3. TLE corepressors interact and modulate the activity of a wide range of transcriptional regulatory systems, one of which is HES1. We have shown that the transcript and protein levels of HES1, the Notch2 and Notch1 receptors and the Jagged1 ligand are induced in meningiomas of all grades, whereas induction of TLE2 and TLE3 occurs specifically in higher-grade meningiomas. Meningioma cell lines express components of the Notch signaling pathway and an inhibitor of this pathway suppresses meningioma cell survival. These results suggest that deregulated expression of the Notch pathway is a critical event in meningioma pathogenesis and that modulation of this and potentially other signaling pathways by TLE corepressors leads to a more malignant phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-05-0240DOI Listing

Publication Analysis

Top Keywords

notch signaling
12
signaling pathway
12
components notch
8
tle2 tle3
8
tle corepressors
8
meningioma cell
8
pathway
5
meningioma
4
meningioma transcript
4
transcript profiles
4

Similar Publications

Some animals can regenerate large missing regions of their nervous system, requiring mechanisms to restore the pattern, numbers, and wiring of diverse neuron classes. Because injuries are unpredictable, regeneration must be accomplished from an unlimited number of starting points. Coordinated regeneration of neuron-glia architecture is thus a major challenge and remains poorly understood.

View Article and Find Full Text PDF

Developmental basis of natural tooth shape variation in cichlid fishes.

Naturwissenschaften

January 2025

Institute of Bioengineering and Biosciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.

While most dentate non-mammalian vertebrates possess simple conical teeth, some demonstrate complex tooth shapes. Lake Malawi cichlid fishes are an extreme example of this, exhibiting a myriad of tooth shapes driven by an ecologically derived rapid evolution of closely related but distinct species. Tooth shape in mammals is generally considered to be established by signaling centers called primary and secondary enamel knots, which are not believed to be present in non-mammalian vertebrates.

View Article and Find Full Text PDF

Background: Metastasis is the leading cause of breast cancer (BC) death, and tumor cells must migrate and invade to metastasize. BC cells that express the pro-metastatic actin regulatory protein MenaINV have an enhanced ability to migrate and intravasate within the primary tumor and extravasate at secondary sites. Though chemotherapy improves patient survival, treatment with paclitaxel leads to upregulation of MenaINV and an increase in metastasis in mice.

View Article and Find Full Text PDF

The TEAD family of transcription factors are best known as the DNA-binding factor in the Hippo pathway, where they act by interacting with transcriptional coactivators YAP and TAZ (YAP/TAZ). Despite the importance of the Hippo pathway, the in vivo functions of TEAD in mammals have not been well established. By comparing mouse mutants lacking TEAD1 and TEAD2 (TEAD1/2) to those lacking YAP/TAZ, we found that TEAD1/2 have both YAP/TAZ-dependent and -independent functions during ventral telencephalon development.

View Article and Find Full Text PDF

Identification and regulation of a novel leptin receptor-linked enhancer during zebrafish ventricle regeneration.

Life Sci

January 2025

TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China. Electronic address:

Aims: Vertebrates vary greatly in their abilities to regenerate injured hearts. Zebrafish possess a remarkable capacity for cardiac regeneration, making them an excellent model for regeneration research. Recent studies have reported the activation and underlying regulatory mechanisms of leptin b (lepb) and the leptin b-linked enhancer (LEN) in injured hearts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!