Role of papillomavirus E1 initiator dimerization in DNA replication.

J Virol

Cold Spring Harbor Laboratory, 1 Bungtown Road, P.O. Box 100, Cold Spring Harbor, New York 11724, USA.

Published: July 2005

Viral initiator proteins are polypeptides that form oligomeric complexes on the origin of DNA replication (ori). These complexes carry out a multitude of functions related to initiation of DNA replication, and although many of these functions have been characterized biochemically, little is understood about how the complexes are assembled. Here we demonstrate that loss of one particular interaction, the dimerization between E1 DNA binding domains, has a severe effect on DNA replication in vivo but has surprisingly modest effects on most individual biochemical activities in vitro. We conclude that the dimer interaction is primarily required for initial recognition of ori.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1143733PMC
http://dx.doi.org/10.1128/JVI.79.13.8661-8664.2005DOI Listing

Publication Analysis

Top Keywords

dna replication
16
dimerization dna
8
dna
5
role papillomavirus
4
papillomavirus initiator
4
initiator dimerization
4
replication
4
replication viral
4
viral initiator
4
initiator proteins
4

Similar Publications

Background: Four species support recreational and commercial fisheries along the U.S. Atlantic Ocean and the Gulf of Mexico, with the Gulf of Mexico stock being overfished for over three decades.

View Article and Find Full Text PDF

Non-coding RNAs and regulatory networks involved in the Ameson portunus (Microsporidia)-Portunus trituberculatus interaction.

Fish Shellfish Immunol

January 2025

The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266237, China. Electronic address:

Ameson portunus, the causative agent of "toothpaste disease" in Portunus trituberculatus and "slurry-like syndrome" in Scylla paramamosain, has resulted in considerable economic losses in the marine crab aquaculture industry in China. Practical control strategies are yet unavailable. Non-coding RNAs (ncRNAs) are crucial components of gene regulation of intracellular parasites, however, their roles in regulating the microsporidia-host interaction remain limited.

View Article and Find Full Text PDF

Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping.

View Article and Find Full Text PDF

Cryo-EM structure of AAV2 Rep68 bound to integration site AAVS1: insights into the mechanism of DNA melting.

Nucleic Acids Res

January 2025

Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States.

The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states.

View Article and Find Full Text PDF

SN1-type alkylating reagents generate O6-methylguanine (meG) lesions that activate the mismatch repair (MMR) response. Since post-replicative MMR specifically targets the nascent strand, meG on the template strand is refractory to rectification by MMR and, therefore, can induce non-productive MMR reactions. The cycling of futile MMR attempts is proposed to cause DNA double-strand breaks in the subsequent S phase, leading to ATR-checkpoint-mediated G2 arrest and apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!