Background And Purpose: Differentiation between tumor recurrence and treatment-related brain injury is often difficult with conventional MRI. We hypothesized that the diffusion-weighted imaging (DWI) could help differentiate these 2 conditions, because water diffusion may be greater for necrotic tissues in the treatment-related brain injury than for tumor tissues in recurrence. Our aim was to analyze whether DWI findings of recurrent tumor are distinct from those of radiation necrosis.
Methods: Seventeen patients were examined prospectively. Two readers assessed the images by consensus for homogeneity and signal intensity of the lesions. Five regions of interest were drawn within the lesions on trace DWI images and apparent diffusion coefficient (ADC) maps. The minimal, maximal, and mean values of each lesion were compared between the 2 groups. Findings in 12 of 17 patients were verified histologically by surgery or biopsy; the diagnoses in the remaining 5 patients were made on the basis of follow-up MRI findings and clinical follow-up.
Results: There were a total of 20 lesions; 12 lesions were due to radiation necrosis and 8 lesions to tumor recurrence. In the radiation necrosis group, 8 lesions had marked hypointensity. In the recurrence group, however, no marked hypointensity was seen. The maximal ADC values within each lesion were significantly smaller for the recurrence group than for the necrosis group (P = .039).
Conclusion: Radiation necrosis usually showed heterogeneity on DWI images and often included spotty, marked hypointensity. Significant difference was found in the maximal ADC values between radiation necrosis and tumor recurrence. DWI was useful in differentiating recurrent neoplasm from radiation necrosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149095 | PMC |
Biochem Biophys Res Commun
December 2024
Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Seoul, South Korea. Electronic address:
Radiation therapy is crucial for cancer treatment, but it often causes tissue damage. The kidney, which is sensitive to radiation, is under-researched in this context. This study aimed to develop a mouse model for radiation-induced acute kidney injury (AKI) using a small animal radiation research platform (SARRP) to mimic clinical radiation conditions.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Informatics, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland.
Manual segmentation of lesions, required for radiotherapy planning and follow-up, is time-consuming and error-prone. Automatic detection and segmentation can assist radiologists in these tasks. This work explores the automated detection and segmentation of brain metastases (BMs) in longitudinal MRIs.
View Article and Find Full Text PDFCureus
November 2024
Orthopaedic Surgery, The Aga Khan University, Karachi, PAK.
Background Acetabular fractures, a rising concern in developing countries, pose a significant challenge due to their complexity and association with post-operative complications. Often caused by high-energy mechanisms like falls and motor vehicle accidents, these fractures require accurate reduction to prevent long-term issues and the potential need for hip replacement. This study investigates the radiological outcomes of acetabular fracture surgery at six months, focusing on the effectiveness of achieving anatomical reduction using the Matta criteria in a low-and middle-income country (LMIC) setting.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical Biophysics, University of Toronto, Toronto, Canada.
Globally, prostate cancer is the second most common malignancy in males, with over 400 thousand men dying from the disease each year. A common treatment modality for localized prostate cancer is radiotherapy. However, up to half of high-risk patients can relapse with radiorecurrent prostate cancer, the aggressive clinical progression of which remains severely understudied.
View Article and Find Full Text PDFChilds Nerv Syst
December 2024
Department Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.
Introduction: Diffuse intrinsic pontine glioma (DIPG) in children comprises 80% of brainstem gliomas. In 2021, 5th edition of WHO CNS tumor classification defined H3K27M altered diffuse midline gliomas (DMGs) which replaced this entity. Lesion location precludes resection and the only current option available is radiotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!