Two isozymes of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) interconvert active cortisol and inactive cortisone. 11 beta-HSD2 (renal) acts only as a dehydrogenase, converting cortisol to cortisone. 11 beta-HSD1 (liver) is a bi-directional enzyme in cell homogenates, whereas in intact cells it typically displays oxo-reductase activity, generating cortisol from cortisone. We recently established that cortisone reductase deficiency is a digenic disease requiring mutations in both the gene encoding 11 beta-HSD1 and in the gene for a novel enzyme located within the lumen of the endoplasmic reticulum (ER), hexose-6-phosphate dehydrogenase (H6PDH). This latter enzyme generates NADPH, the co-factor required for oxo-reductase activity. Therefore, we hypothesized that H6PDH expression may be an important determinant of 11 beta-HSD1 oxo-reductase activity. Transient transfection of chinese hamster ovary (CHO) cells with 11 beta-HSD1 resulted in the appearance of both oxo-reductase and dehydrogenase activities in intact cells. Co-transfection of 11 beta-HSD1 with H6PDH increased oxo-reductase activity whilst virtually eliminating dehydrogenase activity. In contrast, H6PDH had no effect on reaction direction of 11 beta-HSD2, nor did the cytosolic enzyme, glucose-6-phosphate dehydrogenase (G6PD) affect 11 beta-HSD1 oxo-reductase activity. Conversely in HEK 293 cells stably transfected with 11 beta-HSD1 cDNA, transfection of an H6PDH siRNA reduced 11 beta-HSD1 oxo-reductase activity whilst simultaneously increasing 11 beta-HSD1 dehydrogenase activity. In human omental preadipocytes obtained from 15 females of variable body mass index (BMI), H6PDH mRNA levels positively correlated with 11 beta-HSD1 oxo-reductase activity, independent of 11 beta-HSD1 mRNA levels. H6PDH expression increased 5.3-fold across adipocyte differentiation (P < 0.05) and was associated with a switch from 11 beta-HSD1 dehydrogenase to oxo-reductase activity. In conclusion, H6PDH is a crucial determinant of 11 beta-HSD1 oxo-reductase activity in intact cells. Through its interaction with 11 beta-HSD1, H6PDH may represent a novel target in the pathogenesis and treatment of obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1677/jme.1.01718 | DOI Listing |
J Biomol Struct Dyn
October 2023
Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India.
Aldose reductase is an oxo-reductase enzyme belonging to the aldo-keto reductase class. Compounds having thiazolidine-2,4-dione scaffold are reported as potential aldose reductase inhibitors for diabetic complications. The present work uses structure-guided alignment-dependent Gaussian field- and atom-based 3D-QSAR on a dataset of 84 molecules.
View Article and Find Full Text PDFJ Endocrinol
December 2022
Institute of Metabolism & Systems Research, University of Birmingham, Birmingham, UK.
The aged phenotype shares several metabolic similarities with that of circulatory glucocorticoid excess (Cushing's syndrome), including type 2 diabetes, obesity, hypertension, and myopathy. We hypothesise that local tissue generation of glucocorticoids by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts 11-dehydrocorticosterone to active corticosterone in rodents (corticosterone to cortisol in man), plays a role in driving age-related chronic disease. In this study, we have examined the impact of ageing on glucocorticoid metabolism, insulin tolerance, adiposity, muscle strength, and blood pressure in both wildtype (WT) and transgenic male mice with a global deletion of 11β-HSD1 (11β-HSD1-/-) following 4 months high-fat feeding.
View Article and Find Full Text PDFExp Dermatol
May 2015
Department of Dermatology, VA Medical Center and University of California San Francisco, 1700 Owens Street, San Francisco, CA, 94158, USA.
Detrimental consequences of ultraviolet radiation (UVR) in skin include photoageing, immunosuppression and photocarcinogenesis, processes also significantly regulated by local glucocorticoid (GC) availability. In man, the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) generates the active GC cortisol from cortisone (or corticosterone from 11-dehydrocorticosterone in rodents). 11β-HSD1 oxo-reductase activity requires the cofactor NADPH, generated by hexose-6-phosphate dehydrogenase.
View Article and Find Full Text PDFMetab Syndr Relat Disord
December 2013
Department of General Medicine, Kasturba Medical College Hospital Attavar, Mangalore, Karnataka, India .
Introduction: The striking phenotypic similarities between metabolic syndrome and the Cushing syndrome of glucocorticoid excess have often been linked to 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which activates inert precursors like the cortisone, 11-dehydrocortisone to active glucocorticoids by oxo-reductase activity in several organs. Thus, increased expression of 11β-HSD1 is associated with insulin resistance, diabetes, hypertension, and dyslipidemia. In this study, we investigated the association of a common polymorphism of the HSD11B1 gene with metabolic syndrome and its components.
View Article and Find Full Text PDFEur J Endocrinol
February 2013
CEDAM Centre for Endocrinology, Diabetes and Metabolism, Institute of Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK.
Context: Inactivating mutations in the enzyme hexose-6-phosphate dehydrogenase (H6PDH, encoded by H6PD) cause apparent cortisone reductase deficiency (ACRD). H6PDH generates cofactor NADPH for 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1, encoded by HSD11B1) oxo-reductase activity, converting cortisone to cortisol. Inactivating mutations in HSD11B1 cause true cortisone reductase deficiency (CRD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!