Effect of subinhibitory concentrations of ciprofloxacin on Mycobacterium fortuitum mutation rates.

J Antimicrob Chemother

Centre for Medical Microbiology, University College London, Hampstead Campus, Rowland Hill St., London NW3 2PF, UK.

Published: August 2005

Objectives: Fluoroquinolones have found a place in the management of mycobacterial diseases including tuberculosis. It has been previously shown that subinhibitory concentrations of quinolones increase the mutation rate in Escherichia coli and staphylococci. The purpose of this study is to extend this observation to mycobacteria and to quantify mutation rates.

Methods: The mutation rate in Mycobacterium fortuitum to ciprofloxacin, levofloxacin, moxifloxacin, rifampicin, erythromycin and gentamicin resistance was determined when grown with and without various sub-MIC concentrations of ciprofloxacin.

Results: M. fortuitum exposed to 1/2 MIC ciprofloxacin had an increase in the mutation rate of between 72- and 120-fold when selected on quinolones or other antimycobacterial antibiotics. Smaller, but significant increases in mutation rate were seen when the organism was exposed to lower concentrations (1/4 MIC and 1/8 MIC).

Conclusions: These data show that sub-MIC concentrations of fluoroquinolone significantly increase mutation rates and these data suggest that care must be taken to ensure that bacteria are not exposed to subinhibitory concentrations when adding quinolones to a regimen used to treat mycobacterial infection.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dki191DOI Listing

Publication Analysis

Top Keywords

mutation rate
16
subinhibitory concentrations
12
increase mutation
12
mycobacterium fortuitum
8
mutation rates
8
sub-mic concentrations
8
mutation
7
concentrations
5
concentrations ciprofloxacin
4
ciprofloxacin mycobacterium
4

Similar Publications

Background: Endoscopic ultrasound-guided tissue acquisition (EUS-TA) has become essential for diagnosing pancreatic ductal adenocarcinoma (PDAC) and is increasingly utilized for comprehensive genome profiling (CGP) to advance precision medicine. This systematic review and meta-analysis assess the feasibility and clinical utility of EUS-TA samples for CGP in PDAC.

Methods: We conducted a thorough systematic literature search in PubMed, EMBASE, and the Cochrane Library up to October 2023.

View Article and Find Full Text PDF

Neoadjuvant and adjuvant osimertinib in stage IA-IIIA, EGFR-mutant non-small cell lung cancer (NORA).

J Thorac Oncol

December 2024

Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:

Introduction: Treatment with adjuvant osimertinib for three years is the standard-of-care for resected stage IB-IIIA non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR)-mutations. The role of neoadjuvant osimertinib in the perioperative setting is yet to be elucidated in the NeoADAURA study (NCT04351555).

Methods: This is a single center, pilot study of patients with clinical stage IA-IIIA NSCLC (AJCC 8th edition) harboring an activating EGFR mutation (Exon 19 deletion, L858R) (NCT04816838).

View Article and Find Full Text PDF

Unraveling atomic-scale mechanisms of GDP extraction catalyzed by SOS1 in KRAS-G12 and KRAS-D12 oncogenes.

Comput Biol Med

December 2024

Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain. Electronic address:

The guanine exchange factor SOS1 plays a pivotal role in the positive feedback regulation of the KRAS signaling pathway. Recently, the regulation of KRAS-SOS1 interactions and KRAS downstream effector proteins has emerged as a key focus in the development of therapies targeting KRAS-driven cancers. However, the detailed dynamic mechanisms underlying SOS1-catalyzed GDP extraction and the impact of KRAS mutations remain largely unexplored.

View Article and Find Full Text PDF

Objectives: This study evaluates the effectiveness of nanopore sequencing for accurate detection of Mycobacterium tuberculosis pathogens and drug resistance mutations in clinical specimens.

Methods: A retrospective analysis of 2,421 specimens from suspected tuberculosis patients admitted to Xi'an Chest Hospital from 2022 to 2023 was conducted, with 131 specimens undergoing via real-time, fluorescence-based quantitative Polymerase Chain Reaction (qPCR), simultaneous amplification and testing RNA (RNA), Mycobacterium culture, Mycobacterium smear, and nanopore sequencing. Employing clinical tuberculosis diagnoses as the gold standard, sensitivity, specificity, positive predictive value, negative predictive value, concordance rate, and Kappa coefficient were measured for the five detection techniques.

View Article and Find Full Text PDF

The lysine-specific demethylase 5 (KDM5) family, a key post-translational modification of chromatin, can shape tumor immune microenvironment. Here, we performed an extensive clinical and bioinformatic analysis to explore the association between KDM5 mutation and tumor immunity and its impact on the outcomes in pan-cancer immunotherapy. In 2943 patients across 12 tumor types treated with immune checkpoint inhibitors, KDM5-mutant tumors were associated with favorable overall survival (hazard ratio, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!