Our recent study suggested that cyclic compressive loading may promote chondrogenesis of rabbit bone-marrow mesenchymal stem cells (BM-MSCs) in agarose cultures through the transforming growth factor (TGF)-beta signaling pathway. It has been shown that the activating protein 1 (AP-1) (Jun-Fos) complex mediated autoinduction of TGF-beta1 and its binding activity was essential for promoting chondrogenesis of mesenchymal cells, whereas Sox9 was identified as an essential transcription factor for chondrogenesis of embryonic mesenchymal cells. The objective of this study was to examine temporal expression patterns of early responsive genes (Sox9, c-Fos, c-Jun, and TGF-beta type I and II receptors) and induction of their corresponding proteins in agarose culture of rabbit BM-MSCs subjected to cyclic compressive loading. The rabbit BM-MSCs were obtained from the tibias and femurs of New Zealand White rabbits. Cell-agarose constructs were made by suspending BM-MSCs in 2% agarose gel (10(7) cells/ml) for cyclic, unconfined compression tests performed in a custom-made bioreactor. In the loading experiment, specimens were subjected to sinusoidal loading with a magnitude of 15% strain at a frequency of 1 hertz for 4 hours per day. Experiments were conducted for 2 consecutive days. This study showed that cyclic compressive loading promoted gene expressions of Sox9, c-Jun, and both TGF-beta receptors and productions of their corresponding proteins, whereas those gene expressions exhibited different temporal expression patterns among genes and between 2 days of testing. The gene expression of c-Fos was detected only in the samples subjected to1-hour dynamic compressive loading. These findings suggest that the TGF-beta signal transduction and activities of AP-1 and Sox9 are involved in the early stage of BM-MSC chondrogenesis promoted by dynamic compressive loading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1634/stemcells.2004-0202 | DOI Listing |
Fluids Barriers CNS
January 2025
Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.
Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.
View Article and Find Full Text PDFSci Rep
January 2025
School of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, China.
The ore mining sites commonly experience slope instability, which is causing concern for the workers' safety and the operation's stability. Considering the Ziluoyi iron ore mining site as a case study, uniaxial compression strength and shear tests are performed on the lower disk peripheral rock, ore body, and upper disk peripheral rock, leading to the extraction of compressive strength and elastic modulus (lower disk: 77.7 MPa-9.
View Article and Find Full Text PDFDental titanium implants and their surface modifications markedly improve implant biocompatibility. However, studies evaluating the mechanical biocompatibility of implants are scarce. In particular, the analysis of mechanical biocompatibility deficiencies leading to stress shield-induced bone resorption.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital, Affiliated to Anhui Medical University No. 246 of Heping Road, Yaohai District Hefei Anhui 230011 China
: to address the issue of burst drug release in antibiotic-loaded poly(methyl methacrylate) (PMMA) bone cement (ALBC), this study involved preparation of novel PMMA bone cement and determination of its antibacterial activity, biocompatibility, compressive properties, maximum temperature, and setting time. : a novel acrylic monomer, which contains the 3,4-dichloro-5-hydroxyfuran-2(5)-one (DHF), was synthesized and utilized to develop non-leaching antibacterial PMMA bone cement (NLBC), designated as DHF-methacrylic acid (DHF-MAA) bone cement. In the preparation of this bone cement, DHF-MAA served as a key component of the liquid phase.
View Article and Find Full Text PDFStem cells adapt to their local mechanical environment by rearranging their cytoskeleton, which underpins the evolution of their shape and fate as well as the emergence of tissue structure and function. Here, in the second part of a two-part experimental series, we aimed to elucidate spatiotemporal cytoskeletal remodeling and resulting changes in morphology and mechanical properties of cells and their nuclei. Akin to mechanical testing of the most basic living and adapting unit of life, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!