Radioarsenic labelled radiopharmaceuticals could be a valuable asset to Positron Emission Tomography (PET). In particular, the long half-lives of (72)As (T(1/2)=26 h) and (74)As (T(1/2)=17.8 d) allow to investigate slow physiological or metabolical processes, like the enrichment and distribution of antibodies in tumor tissue. This work describes the direct production of no-carrier-added (nca) arsenic isotopes *As, with *=71, 72, 73, 74 or 77, the reaction to [*As]AsI(3) and its radiochemical separation from the irradiated solid germanium oxide via polystyrene-based solid-phase extraction. The germanium oxide target, irradiated at a cyclotron or a nuclear reactor, is dissolved in concentrated HF and Ge is separated almost quantitatively (99.97%) as [GeF(6)](2-). [*As]AsI(3) is formed by addition of potassium iodide. The radiochemical separation yield for arsenic is >90%. [*As]AsI(3) is a versatile radioarsenic labelling synthon.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2005.04.005DOI Listing

Publication Analysis

Top Keywords

radiochemical separation
12
germanium oxide
12
method radiochemical
4
separation arsenic
4
arsenic irradiated
4
irradiated germanium
4
oxide radioarsenic
4
radioarsenic labelled
4
labelled radiopharmaceuticals
4
radiopharmaceuticals valuable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!