The biosorption of Acid red 88 (AR88), Acid green 3 (AG3) and Acid orange 7 (AO7) by deactivated fresh water macro alga Azolla filiculoides was investigated in batch mode. Langmuir and Freundlich adsorption models were used for the mathematical description of the batch biosorption equilibrium data and model constants were evaluated. The adsorption capacity was pH dependent with a maximum value of 109.0 mg/g at pH 7 for AR88, 133.5 mg/g at pH 3 for AG3 and 109.6 mg/g at pH 3 for AO7, respectively, was obtained. The pseudo first and second order kinetic models were also applied to the experimental kinetic data and high correlation coefficients favor pseudo second order model for the present systems. The ability of A. filiculoides to biosorb AG3 in packed column was also investigated. The column experiments were conducted to study the effect of important design parameters such as initial dye concentration (50-100 mg/L), bed height (15-25 cm) and flow rate (5-15 mL/min) to the well-adsorbed dye. At optimum bed height (25 cm), flow rate (5 mL/min) and initial dye concentration (100 mg/L), A. filiculoides exhibited 28.1mg/g for AG3. The Bed Depth Service Time model and the Thomas model were used to analyze the experimental data and the model parameters were evaluated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2005.05.014 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Chemical Engineering, Zakir Hussain College of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
Water pollution because of the presence of heavy metals remains a serious worry. The present work demonstrates the exclusion of cobalt ion (or Co(II)) from water using novel and cost-effective biosorbents. Initially, the biosorbent was chemically modified using orthophosphoric acid and then subjected to calcination to result acid modified date seed biochar (AMDB).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt.
Biosorbents have demonstrated considerable potential for the remediation of metals in aqueous environments. An aqueous extract of L. (EiE) and its extract-coated silver nanoparticles have been prepared and employed for the removal of iron.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana 122413, India. Electronic address:
Climate change, the overconsumption of fossil fuels, and rapid population and economic growth have collectively driven a growing emphasis on environmental sustainability and the need for effective resource management. Chemicals or materials not currently regulated are known as contaminants of emergent concern (CECs). Nevertheless, wastewater is thought to be its main source, and worries about its probable presence in the environment are growing due to its potential damage to human and environmental health.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Energy and Environment, Southeast University, Nanjing, 210096, China; Key Laboratory of Water Safety and Aquatic Ecosystem Health of Xizang, Xianyang, 712082, China; Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xianyang, 712082, China. Electronic address:
In high-altitude regions, elevated mercury (Hg) levels in wastewater treatment plants (WWTPs) influent raise concerns about treatment efficiency and environmental impact. This study investigated the Hg biosorption capacity of activated sludge under high-altitude conditions, focusing on the binding mechanisms between EPS and Hg, and variations in EPS secretion. Low pressure, oxygen, and temperature at high altitudes increase EPS secretion, enhancing Hg biosorption.
View Article and Find Full Text PDFSci Total Environ
December 2024
LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
Acid mine drainage (AMD) nature, persistence and the considerable amount of toxic elements cause significant environmental damage. Traditional passive treatment systems typically focus on neutralizing AMD using limestone and removing common toxic metal(loid)s, and often overlook the recovery of economic and strategic elements (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!