Aim: Noradrenaline (NA) uptake transporters are known to reverse their action during acute myocardial ischaemia and to contribute to ischaemia-induced myocardial interstitial NA release. By contrast, functional roles of choline and glutamate transporters during acute myocardial ischaemia remain to be investigated. Because both transporters are driven by the normal Na+ gradient across the plasma membrane in a similar manner to NA transporters, the loss of Na+ gradient would affect the transporter function, which would in turn alter myocardial interstitial choline and glutamate levels. The aim of the present study was to examine the effects of acute myocardial ischaemia and the inhibition of Na+,K+-ATPase on myocardial interstitial glutamate and choline levels.

Methods: In anaesthetized cats, we measured myocardial interstitial glutamate and choline levels while inducing acute myocardial ischaemia or inhibiting Na+,K+-ATPase by local administration of ouabain.

Results: The choline level was not changed significantly by ischaemia (from 0.93 +/- 0.06 to 0.82 +/- 0.13 microm, mean +/- SE, n = 6) and was decreased slightly by ouabain (from 1.30 +/- 0.06 to 1.05 +/- 0.07 microm, P < 0.05, n = 6). The glutamate level was significantly increased from 9.5 +/- 1.9 to 34.7 +/- 6.1 microm by ischaemia (P < 0.01, n = 6) and from 8.9 +/- 1.0 to 15.9 +/- 2.3 microm by ouabain (P < 0.05, n = 6). Inhibition of glutamate transport by trans-L-pyrrolidine-2,4-dicarboxylate (t-PDC) suppressed ischaemia- and ouabain-induced glutamate release.

Conclusion: Myocardial interstitial choline level was not increased by acute myocardial ischaemia or by Na+,K+-ATPase inhibition. By contrast, myocardial interstitial glutamate level was increased by both interventions. The glutamate transporter contributed to glutamate release via retrograde transport.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-201X.2005.01444.xDOI Listing

Publication Analysis

Top Keywords

myocardial interstitial
28
acute myocardial
24
myocardial ischaemia
24
myocardial
13
interstitial choline
12
choline glutamate
12
interstitial glutamate
12
level increased
12
glutamate
11
+/-
9

Similar Publications

Doxorubicin-induced cardiomyopathy (DOX-IC) is a significant and common complication in patients undergoing chemotherapy, leading to cardiac remodeling and reduced heart function. We hypothesized that the intrapericardial injection of hydrogels derived from the cardiac decellularized extracellular matrix (dECM) loaded with adipose tissue-derived stromal cells (ASC) and their secretome dampens or reverses the progression of DOX-IC. DOX-IC was induced in Wistar male rats through ten weekly intra-peritoneal injections of doxorubicin (cumulative dose: 18 mg/kg).

View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is the ultimate manifestation of the myocardial response to various genetic and environmental changes and is characterized mainly by impaired left ventricular systolic and diastolic function. DCM can ultimately lead to heart failure, ventricular arrhythmia (VA), and sudden cardiac death (SCD), making it a primary indication for heart transplantation. With advancements in modern medicine, several novel techniques for evaluating myocardial involvement and disease severity from diverse perspectives have been developed.

View Article and Find Full Text PDF

Cardiac manifestations in systemic sclerosis (SSc) are variable and are associated with a poor prognosis, frequently resulting in impaired right ventricular function and heart failure. A high proportion of patients with SSc experience pulmonary arterial hypertension (PAH), interstitial lung disease, or myocardial involvement, all of which can lead to exercise intolerance. In this context, cardiopulmonary exercise testing (CPET) is a useful tool for diagnosing exercise intolerance, elucidating its pathophysiology, and assessing its prognosis.

View Article and Find Full Text PDF

Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway.

Cell Death Dis

January 2025

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.

Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!