Background: Sustained proteinuria is a major factor leading to kidney fibrosis and end-stage renal failure. Tubular epithelial cells are believed to play a crucial role in this process by producing mediators leading to fibrosis and inflammation. Congenital nephrotic syndrome of the Finnish type (NPHS1) is a genetic disease caused by mutations in a podocyte protein nephrin, which leads to constant heavy proteinuria from birth. In this work we studied the tubulointerstitial changes that occur in NPHS1 kidneys during infancy.
Methods: The pathologic lesions and expression of profibrotic and proinflammatory factors in nephrectomized NPHS1 kidneys were studied by immunohistochemistry, Western blotting, and cytokine antibody array. Oxidative stress in kidneys was assessed by measurement of gluthatione redox state.
Results: The results indicated that (1) severe tubulointerstitial lesions developed in NPHS1 kidneys during infancy; (2) tubular epithelial cells did not show transition into myofibroblasts as studied by the expression of vimentin, alpha-smooth muscle actin (alpha-SMA), collagen, and matrix metalloproteinases 2 and 9 (MMP-2 and -9); (3) the most abundant chemokines in NPHS1 tissue were neutrophil activating protein-2 (NAP-2), macrophage inhibiting factor (MIF), and monocyte chemoattractant protein-1 (MCP-1); (4) monocyte/macrophage cells expressing CD14 antigen were the major inflammatory cells invading the interstitium; (5) the arteries and arterioles showed intimal hypertrophy, but the microvasculature in NPHS1 kidneys remained quite normal; and (6) excessive oxidative stress was evident in NPHS1 kidneys.
Conclusion: Heavy proteinuria in NPHS1 kidneys was associated with interstitial fibrosis, inflammation, and oxidative stress. The tubular epithelial cells, however, were resistant to proteinuria and did not show epithelial-mesenchymal transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1523-1755.2005.00386.x | DOI Listing |
Sci Rep
January 2025
Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia.
Oxidative stress and apoptosis are highly engaged in development of diabetic nephropathy (DN). In monotherapy, dapagliflozin and pioglitazone positively modulate target organ damage even independently of their hypoglycaemic effect. This study evaluated whether a simultaneous PPARγ activation and SGLT cotransporter inhibition offer superior protection against DN-related oxidative and apoptotic processes in a T1DM rat model.
View Article and Find Full Text PDFKidney Int Rep
December 2024
Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.
Introduction: The profile of genetic and nongenetic factors associated with progression to kidney failure (KF) in steroid-resistant nephrotic syndrome (SRNS) is largely unknown in admixed populations.
Methods: A total of 101 pediatric patients with primary SRNS were genetically assessed targeting Mendelian causes and status with a 62-NS-gene panel or whole exome sequencing, as well as genetic ancestry. Variant pathogenicity was evaluated using the American College Medical of Genetics and Genomics (ACMG) criteria.
Diabetol Metab Syndr
December 2024
NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
Objectives: Among all the diabetes complications brought on by persistent inflammation is diabetic kidney disease (DKD). One essential method of the inflammatory response's programmed cell death is anthrax. One of the main causes of diabetic renal disease progression in a high-glycemic environment is the lysis of renal resident cells.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pediatrics, The First Hospital of Guangxi Medical University, Nanning, China.
This study aimed to discuss the pathogenic hereditary factors of children with steroid-resistant nephrotic syndrome (SRNS) in Guangxi, China. We recruited 89 patients with SRNS or infantile NS from five major pediatric nephrology centers in Guangxi, and conducted a retrospective analysis of clinical data. Whole-exome sequencing analysis was also performed on all patients.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia.
NPHS1 and NPHS2 are kidney gene components that encode for nephrin and podocin, respectively. They play a role in the progression of congenital (CNS) and steroid-resistant (SRNS) nephrotic syndrome. Hence, this study aimed to determine the prevalence and renal outcomes of NPHS mutations among pediatric patients with CNS and SRNS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!