The Pd/phosphine-catalyzed reaction of 1 with aryl bromides leads to the selective synthesis of either 6-aryl octahydrocyclopenta[b]pyrroles (3), the corresponding 5-aryl isomers 5, diarylamine 2, or hexahydrocyclopenta[b]pyrrole 4 depending on the structure of the phosphine ligand. These transformations are effective with a variety of different aryl bromides and provide 3-5 with excellent levels of diastereoselectivity (dr > or = 20:1). The changes in product distribution are believed to derive from the influence of Pd-catalyst structure on the relative rates of reductive elimination, beta-hydride elimination, alkene insertion, and alkene displacement processes in a mechanistically complex reaction. The effect of phosphine ligand structure on product distribution is described in detail, along with analysis of a proposed mechanism for these transformations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736107 | PMC |
http://dx.doi.org/10.1021/ja0430346 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!