We report a Korean patient with glycogen storage disease type 1b (GSD-1b) whose diagnosis was confirmed by liver biopsy and laboratory results. The patient presented with delay of puberty and short stature on admission and had typical clinical symptoms of GSD as well as chronic neutropenia and inflammatory bowel disease. Mutation analysis of the glucose 6-phosphate translocase 6-phosphate translocase (SLC37A4) gene revealed that the patient was a compound heterozygote of two different mutations including a deletion mutation (c.1042_1043delCT; L348fs) and a missense mutation (A148V). The L348fs mutation was inherited from the patient's father and has been reported in an Italian family with GSD-1b, while the A148V mutation was transmitted from the patient's mother and was a novel mutation. To the best of our knowledge, this is the first report of genetically confirmed case of GSD-1b in Korean.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782211PMC
http://dx.doi.org/10.3346/jkms.2005.20.3.499DOI Listing

Publication Analysis

Top Keywords

6-phosphate translocase
12
novel mutation
8
mutation a148v
8
glucose 6-phosphate
8
translocase slc37a4
8
slc37a4 gene
8
korean patient
8
patient glycogen
8
glycogen storage
8
storage disease
8

Similar Publications

In Silico Screening of Chlorogenic Acids from Plant Sources against Human Translocase-I to Identify Competitive Inhibitors to Treat Diabetes.

ACS Omega

February 2024

Department of Computational Biology and AI, Kcat Enzymatic Pvt Ltd, #16, Ramakrishnappa Road, Cox Town, Bangalore, Karnataka 560005, India.

Chlorogenic acids (CHLs) are known to competitively bind to translocase-I (T1) of the glucose-6-phosphatase (G6 Pase) system, thereby inhibiting the transport of glucose-6-phosphate (G6P). This competitive binding results in a consequential reduction in blood sugar levels. In this study, steered molecular dynamics (SMD) simulation is employed to investigate the interaction between T1 and G6P, aiming to gain insights into the binding dynamics and diffusion process of G6P through T1.

View Article and Find Full Text PDF

Unlabelled: Glucose-6-phosphate translocase enzyme, encoded by SLC37A4 gene, is a crucial enzyme involved in transporting glucose-6-phosphate into the endoplasmic reticulum. Inhibition of this enzyme can cause Von-Gierke's/glycogen storage disease sub-type 1b. The current study dealt to elucidate the intermolecular interactions to assess the inhibitory activity of Chlorogenic acid (CGA) against SLC37A4 was assessed by molecular docking and dynamic simulation.

View Article and Find Full Text PDF

Background: Glycogen storage disease type Ib (GSD Ib) is an autosomal recessively inherited deficiency of the glucose-6-phosphate translocase (G6PT). Clinical features include a combination of a metabolic phenotype (fasting hypoglycemia, lactic acidosis, hepatomegaly) and a hematologic phenotype with neutropenia and neutrophil dysfunction. Dietary treatment involves provision of starches such as uncooked cornstarch (UCCS) and to provide prolonged enteral supply of glucose.

View Article and Find Full Text PDF

Glycogen storage disease type Ib (GSDIb) is an autosomal recessive disorder caused by mutations of SLC37A4 gene, which encodes glucose 6-phosphate translocase (G6PT). Malfunction of G6PT leads to excessive fat and glycogen in liver, kidney, and intestinal mucosa. The clinical manifestations of GSD1b include hepatomegaly, renomegaly, neutropenia, hypoglycemia, and lactic acidosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!