Protein resistant surfaces based on poly(ethylene glycol) (PEG) coatings are extensively applied in the fields of biosensors, tissue engineering, fundamental cell-surface interaction research, and drug delivery systems. The structural organization of the PEG film on the surface has a significant effect on the performance of the film to resist protein adsorption. In this paper, we report an approach using solvent to control the organization of the polymeric monolayer on gold. A water soluble copolymer with grafted PEG side chains and alkyl disulfide side chains was synthesized. A polymeric monolayer was fabricated on a gold surface from different solutions (water- and toluene-based) of the copolymer. The organization of the polymeric monolayers was characterized by means of ellipsometry, cyclic voltammetry, contact angle, X-ray photoelectron spectroscopy, and atomic force microscopy. It was proven that the structural organization of the polymeric monolayer on a gold surface could be controlled by the solvent. A polymeric monolayer with PEG enriched at the outer level is obtained when water is used as the solvent. Various types of proteins, including fibrinogen, albumin, and normal human serum, were used to test the protein resistance of the gold surfaces modified by the polymeric monolayers. The polymeric monolayer formed from a water solution of the copolymer showed excellent protein resistance. In addition, by using water as the solvent, patterning of the polymeric monolayer could easily be achieved through a combination of lift-off and self-assembly. We believe that the approach reported here provides an easy, fast, and efficient way to fabricate a robust protein resistant surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la0471590 | DOI Listing |
PLoS Comput Biol
January 2025
Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America.
Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
Currently, the development of polymeric hole-transporting materials (HTMs) lags behind that of small-molecule HTMs in inverted perovskite solar cells (PSCs). A critical challenge is that conventional polymeric HTMs are incapable of forming ultra-thin and conformal coatings like self-assembly monolayers (SAMs), especially for substrates with rough surface morphology. Herein, we address this challenge by designing anchorable polymeric HTMs (CP1 to CP5).
View Article and Find Full Text PDFSmall
January 2025
School of Chemistry and Chemical Engineering, University of Surrey, GU2 7XH, Guildford, UK.
Int J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:
Nat Commun
December 2024
Department of Materials Science and NanoEngineering and the Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA.
As the feature size of microelectronic circuits is scaling down to nanometer order, the increasing interconnect crosstalk, resistance-capacitance (RC) delay and power consumption can limit the chip performance and reliability. To address these challenges, new low-k dielectric (k < 2) materials need to be developed to replace current silicon dioxide (k = 3.9) or SiCOH, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!