Reactivation of a commercial diesel oxidation catalyst by acid washing.

Environ Sci Technol

Instituto de Catálisis y Petroleoquímica (CSIC), Marie Curie 2, Campus de Cantoblanco, 28049-Madrid, Spain.

Published: May 2005

The catalytic activity of samples taken from an oxidation catalyst mounted on diesel-driven automobiles and aged under road conditions was recovered to a significant extent by washing with a dilute solution of citric acid. The characterization of samples arising from a fresh, a vehicle-aged, and a regenerated catalyst was carried out by scanning electron microscopy (SEM-EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Relatively high levels of S and P, in the form of aluminum sulfate and phosphate, respectively, together with contaminant Si were detected in the used catalyst. Washing of the vehicle-aged catalytic oxidation converter revealed high efficiency in the extraction of the main contaminants detected (S and P) by this nondestructive methodology. The results of the experiments reported here should encourage the development of a technology based on this reactivation procedure for the rejuvenation of the catalytic device mounted on diesel exhaust pipes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es040062fDOI Listing

Publication Analysis

Top Keywords

oxidation catalyst
8
reactivation commercial
4
commercial diesel
4
diesel oxidation
4
catalyst
4
catalyst acid
4
acid washing
4
washing catalytic
4
catalytic activity
4
activity samples
4

Similar Publications

Developing a reliable procedure for the growth of III-V nanowires (NW) on silicon (Si) substrates remains a significant challenge, as current methods rely on trial-and-error approaches with varying interpretations of critical process steps such as sample preparation, Au-Si alloy formation in the growth reactor, and nanowire alignment. Addressing these challenges is essential for enabling high-performance electronic and optoelectronic devices that combine the superior properties of III-V NW semiconductors with the well-established Si-based technology. Combining conventional scalable growth methods, such as Metalorganic Chemical Vapor Deposition (MOCVD) with in situ characterization using Environmental Transmission Electron Microscopy (ETEM-MOCVD) enables a deeper understanding of the growth dynamics, if that knowledge is transferable to the scalable processes.

View Article and Find Full Text PDF

Regioselective 1,4-Addition of P(O)-H Species to In SituFormed 1-Benzopyrylium Ion from C3-Substituted 2-Chromene Hemiketals to Construct C3-Functionalized C4-Phosphorylated 4-Chromenes.

J Org Chem

January 2025

Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P.R. China.

Herein, we report the first example that P(O)-H species including -phosphonates and -phosphine oxides could participate in a highly regioselective 1,4-addition to in situ generated 1-benzopyrylium ion from C3-substituted 2-chromene hemiketals, which provides a brand-new and effective approach for the synthesis of C4-phosphorylated 4-chromenes with diverse C3-functionality (ketone, ester, sulfonyl, aryl, and alkyl groups). In total, the reaction features the use of inexpensive Zn(ClO)·6HO as a catalyst, low catalyst loading (only 5 mol %), mild reaction conditions (60 °C, 10 min to 24 h), and broad substrate scope (46 examples) as well as good to high yields (>90% yield on average). More importantly, mechanistic experiments demonstrated the essential role of the C3-substituent on 2-chromene hemiketals in stabilizing the in situ generated 1-benzopyrylium ion and the regioselective 1,4-addition control.

View Article and Find Full Text PDF

Gold(I)-catalyzed intramolecular hydroarylation of dialkynyl(biaryl)phosphine oxides provided versatile benzo-fused phosphepine oxides. O-exo adducts were obtained as the major product, and O-endo adducts were the minor product. O-exo and O-endo indicate the position of an oxygen atom with respect to the central phosphepine framework.

View Article and Find Full Text PDF

Revealing the Surface Reconstruction on the High OER Catalytic Activity of Ni3S2.

ChemSusChem

January 2025

Sun Yat-Sen University, School of Materials Science and Engineering, No. 135, Xingang Xi Road, China, 510006, Guangzhou, CHINA.

Sluggish oxygen evolution reaction (OER) is a crucial part of water splitting and solar fuel generation, which limits their utilization. Ni3S2 is a promising OER catalyst, in which surface reconstruction is an important step to improve performance. In this study, DFT calculations were employed to investigate the effect of surface reconstruction on (001), (110), and (101) surfaces of Ni3S2 in alkaline OER.

View Article and Find Full Text PDF

The electroconversion of polyethylene terephthalate (PET) into C2 fine chemicals and hydrogen (H2) presents a promising solution for advancing the circular plastics economy. In this study, we report the electrooxidation of ethylene glycol (EG) to glycolic acid (GA) using a Pt-Ni(OH)2 catalyst, achieving a high Faraday efficiency (>90%) even at high current densities (250 mA cm-2 at 0.8 V vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!