Recent evidence suggests that the heart possesses a greater regeneration capacity than previously thought. In the present study, we isolated undifferentiated precursors from the cardiac nonmyocyte cell population of neonatal hearts, expanded them in culture, and induced them to differentiate into functional cardiomyocytes. These cardiac precursors appear to express stem cell antigen-1 and demonstrate characteristics of multipotent precursors of mesodermal origin. Following infusion into normal recipients, these cells home to the heart and participate in physiological and pathophysiological cardiac remodeling. Cardiogenic differentiation in vitro and in vivo depends on FGF-2. Interestingly, this factor does not control the number of precursors but regulates the differentiation process. These findings suggest that, besides its angiogenic actions, FGF-2 could be used in vivo to facilitate the mobilization and differentiation of resident cardiac precursors in the treatment of cardiac diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1143587PMC
http://dx.doi.org/10.1172/JCI23418DOI Listing

Publication Analysis

Top Keywords

cardiac precursors
12
differentiation resident
8
resident cardiac
8
functional cardiomyocytes
8
cardiac
6
precursors
6
fgf-2 controls
4
differentiation
4
controls differentiation
4
precursors functional
4

Similar Publications

Proteomics Analysis of Five Potential Plasma-derived Exosomal Biomarkers for Acute Myocardial Infarction.

Curr Med Chem

January 2025

Department of Cardiology, Taizhou Hospital of Zhejiang Province, affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China.

Aims: This study was to explore the relationship between plasma exosomes and Acute myocardial infarction (AMI).

Background: Acute myocardial infarction (AMI) is one of the most common cardiovascular complications. Recent studies have shown that exosomes play a crucial role in the development and progression of cardiovascular diseases.

View Article and Find Full Text PDF

Study Design: Experimental Animal Study.

Objective: To continue validating an antibody which targets an epitope of neurofilament light chain (NF-L) only available during neurodegeneration and to utilize the antibody to describe the pattern of axonal degeneration 10 days post-unilateral C4 contusion in the rat.

Setting: University of Florida laboratory in Gainesville, USA.

View Article and Find Full Text PDF

Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio De Janeiro, Rio de Janeiro, Brazil.

Background: Alzheimer's disease (AD) is the leading cause of dementia in elderly humans worldwide. More than 40 million people currently suffer from AD, and this prevalence tends to increase considerably in the coming decades due to increased longevity. The unfolded protein response (UPR) is an adaptive signaling mechanism that aims to maintain cell viability under misfolded protein accumulation and endoplasmic reticulum stress.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.

Background: Alzheimer's disease (AD) has both genetic and environmental risk factors. Gene-environment interaction may help explain some missing heritability. There is strong evidence for cigarette smoking as a risk factor for AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!