Indoleamines and 5-methoxyindoles in trout pineal organ in vivo: daily changes and influence of photoperiod.

Gen Comp Endocrinol

Laboratorio de Fisiología Animal, Departamento Biología Funcional y CC Salud, Facultad de Biología, Universidad de Vigo, 36200 Vigo, Spain.

Published: October 2005

AI Article Synopsis

  • The study investigates the daily patterns of indoleamines, particularly melatonin and its precursors, in the pineal organ of rainbow trout under various light conditions.
  • Melatonin levels showed distinct daily rhythms that were influenced by the length of light exposure, with higher levels during longer photoperiods and significant fluctuations in 5-HT content noted during shorter periods.
  • The research also reveals that other related compounds like 5-methoxyindoles displayed cyclic changes in their levels, further emphasizing the impact of photoperiod on these biochemical signals in the trout.

Article Abstract

This study describes the diel rhythms in several indoleamines, melatonin, and related 5-methoxyindoles in the pineal organ of rainbow trout in vivo. In addition, the effect of different photoperiod conditions was evaluated. Melatonin levels displayed clear daily rhythms in the pineal organ of rainbow trout kept experimentally under long (LD 16:08), neutral (LD 12:12), and short (LD 08:16) photoperiods. Duration of melatonin signal was dependent on the night length of prevailing photoperiod, while peak amplitude was higher when lengthening the photoperiod. Significant daily rhythms in 5-HT content, the precursor of melatonin synthesis, were found in neutral and short photoperiod with increases of the amine content just after the light-dark interphase and decreases in the middle of the night, which were more important under short photoperiod. In contrast, no significant 24-h cyclic variation was found in pineal 5-HT content under long photoperiod. Daily profiles in the content of the main 5-HT oxidative metabolite, the 5-hydroxyindoleacetic acid (5-HIAA), outlined those of the amine precursor. The chronograms of both aminergic compounds contrast with those of 5-hydroxytryptophan content, which displayed a net tendency to increase at night. This study also provides evidence for the existence of daily cyclic changes in the content of 5-methoxytryptamine (5-MT), 5-methoxyindoleacetic acid (5-MIAA), and 5-methoxytryptophol (5-MTOL) in trout pineal organ, which were also dependent on photoperiod. The 24-h profiles in 5-MT content correlated well with those of 5-HT, showing a peak at the first hour of darkness in all photoperiodic conditions, and a decay at midnight only in both neutral and long photoperiods. Similarly, the content of 5-MTOL also displayed high values during the day-night transition in trout kept under neutral and long photoperiods, followed by a slow decay all along the night. Finally, levels of 5-MIAA increased in all photoperiods when lights were turned off, being this nocturnal increase maximal in fish kept under LD 16:08. These results suggest that light-dark cycle modulates daily rhythms in pineal indoles and non-melatonin 5-methoxyindoles by acting mainly through the melatonin synthesis activity, which limits the availability of 5-HT for the oxidative and direct methylation pathways. In addition, it seems that a nocturnally increased synthesis of 5-HT might be a requirement for the optimal formation of melatonin and other 5-methoxyindoles in the pineal organ when trout remain under short photoperiods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2005.04.010DOI Listing

Publication Analysis

Top Keywords

pineal organ
20
daily rhythms
12
trout pineal
8
photoperiod
8
melatonin 5-methoxyindoles
8
5-methoxyindoles pineal
8
organ rainbow
8
rainbow trout
8
rhythms pineal
8
photoperiod daily
8

Similar Publications

Organ fibrosis is a pathological process characterized by the inability of normal tissue cells to regenerate sufficiently to meet the dynamic repair demands of chronic injury, resulting in excessive extracellular matrix deposition and ultimately leading to organ dysfunction. Despite the increasing depth of research in the field of organ fibrosis and a more comprehensive understanding of its pathogenesis, effective treatments for fibrosis-related diseases are still lacking. Melatonin, a neuroendocrine hormone synthesized by the pineal gland, plays a crucial role in regulating biological rhythms, sleep, and antioxidant defenses.

View Article and Find Full Text PDF

Well-preserved specimens of a new species of arthrodiran placoderm, sp. nov. (Middle Devonian of Victoria, Australia), reveals previously unknown information on the dermal skeleton, body-shape and dentition of the wide-spread genus .

View Article and Find Full Text PDF

Zebrafish Dark-Dependent Behavior Requires Phototransduction by the Pineal Gland.

J Pineal Res

November 2024

School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel.

Located dorsally underneath a thin translucent skull in many teleosts, the pineal gland is a photoreceptive organ known as a key element of the circadian clock system. Nevertheless, the presence of additional routes of photoreception presents a challenge in determining its specific roles in regulating photic-related behavior. Here, we show the importance of the pineal gland in mediating a prolonged motor response of zebrafish larvae to sudden darkness, both as a photodetector and as a circadian pacemaker.

View Article and Find Full Text PDF

Melatonin, a hormone primarily produced by the pineal gland, exhibits a range of physiological functions that extend beyond its well-known role in regulating circadian rhythms. This hormone influences energy metabolism, modulates insulin sensitivity, and plays a significant role in controlling sleep patterns and food intake. Notably, melatonin is also synthesized in various peripheral organs, including the gastrointestinal system and pancreas, suggesting its function as a local hormone.

View Article and Find Full Text PDF

Microbial melatonin metabolism in the human intestine as a therapeutic target for dysbiosis and rhythm disorders.

NPJ Biofilms Microbiomes

November 2024

Laboratory of Food Systems Biotechnology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.

Melatonin (MT) (N-acetyl-5-methoxytryptamine) is an indoleamine recognized primarily for its crucial role in regulating sleep through circadian rhythm modulation in humans and animals. Beyond its association with the pineal gland, it is synthesized in various tissues, functioning as a hormone, tissue factor, autocoid, paracoid, and antioxidant, impacting multiple organ systems, including the gut-brain axis. However, the mechanisms of extra-pineal MT production and its role in microbiota-host interactions remain less understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!