Monocyte hyperactivation as seen in diabetes results in increased cytoskeletal rigidity and reduced cell deformability leading to microchannel occlusions and microvascular complications. The thiazolidinediones (TZDs) are PPAR-gamma agonists that have been reported to exert beneficial non-metabolic effects on the vasculature. This study demonstrates that the TZD, Rosiglitazone, significantly reduces f-MLP-induced actin polymerisation in human monocytic cells (p < 0.05). Two of the key signalling processes known to be involved in the regulation of cytoskeletal remodelling were investigated: PI(3)K-dependent Akt phosphorylation and intracellular calcium concentration [Ca(2+)](i). The PI(3)K inhibitor, Wortmannin, ameliorated f-MLP-induced actin polymerisation (p < 0.05), while the Ca(2+) sequestration inhibitor, thapsigargin, induced actin depolymerisation (p < 0.05), confirming the involvement of both processes in cytoskeletal remodelling. Rosiglitazone significantly reduced f-MLP activation of Akt (p < 0.05), and significantly increased [Ca(2+)](i) in both resting and f-MLP-stimulated cells (p < 0.05). Therefore, Rosiglitazone interacts with signalling events downstream of occupancy of the f-MLP receptor, to modulate cytoskeletal remodelling in a PPAR-gamma-independent manner. To our knowledge, these results are the first to present evidence that a PPAR-gamma agonist can modulate actin remodelling in monocytes, and may therefore be protective against microvascular damage in diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2005.05.127 | DOI Listing |
Sci Rep
January 2025
Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
Cancer-associated fibroblasts (CAFs) are a crucial component in the tumor microenvironment (TME) of peritoneal metastasis (PM), where they contribute to tumor progression and metastasis via secretion of interleukin-6 (IL-6). Here, we investigated the role of IL-6 in PM of gastric cancer (GC) and assessed whether anti-IL-6 receptor antibody (anti-IL-6R Ab) could inhibit PM of GC. We conducted immunohistochemical analysis of IL-6 and α-smooth muscle (α-SMA) expressions in clinical samples of GC and PM, and investigated the interactions between CAFs and GC cells in vitro.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
PhysioLab, University of Florence, 50019 Sesto Fiorentino, Italy.
In maximally Ca-activated demembranated fibres from the mammalian skeletal muscle, the depression of the force by lowering the temperature below the physiological level (~35 °C) is explained by the reduction of force in the myosin motor. Instead, cooling is reported to not affect the force per motor in Ca-activated cardiac trabeculae from the rat ventricle. Here, the mechanism of the cardiac performance depression by cooling is reinvestigated with fast sarcomere-level mechanics.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
School of Medicine, Shanghai University, Shanghai, 200444, China.
Background: Interfacial heterogeneity is widely explored to reveal molecular mechanisms of force-mediated pathways due to biased tension. However, the influence of cell density,, curvature, and interfacial heterogeneity on underlying pathways of mechanotransduction is obscure.
Methods: Polydimethylsiloxane (PDMS)-based stencils were micropatterned to prepare the micropores for cell culture.
Nat Commun
January 2025
Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
Many micro-particles including pathogens strongly adhere to hosts. It remains elusive how macrophages detach these surface-bound particles during phagocytosis. We show that, rather than binding directly to these particles, macrophages form unique β integrin-mediated adhesion structures at the cell-substrate interfaces, specifically encircling the surface-bound particles.
View Article and Find Full Text PDFJ Cell Biol
April 2025
University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA.
Arginylation is the posttranslational addition of arginine to a protein by arginyltransferase-1 (ATE1). Previous studies have found that ATE1 targets multiple cytoskeletal proteins, and Ate1 deletion causes cytoskeletal defects, including reduced cell motility and adhesion. Some of these defects have been linked to actin arginylation, but the role of other arginylated cytoskeletal proteins has not been studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!