Molecular characterization of two novel splice variants of G alphai2 in the rat vestibular periphery.

Brain Res Mol Brain Res

Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226-3596, USA.

Published: June 2005

GTP binding proteins play an important role in mediating signals transduced across the cell membrane by membrane-bound receptors. We previously described a partial sequence, termed Galphai2vest, obtained from rat vestibular tissue that was nearly identical to rat Galphai2. Using an experimental strategy to further characterize Galphai2vest (GenBank accession number AF189020) and identify other possible Galphai2-related transcripts expressed in the rat vestibular periphery, we employed a RecA-based gene enrichment protocol in place of conventional library screening techniques. We identified two novel Galphai2 splice variants, Galphai2(a) (GenBank accession number AY899210) and Galphai2(b) (GenBank accession number AY899211), that have most of exons 8 and 9 deleted, and exons 5 through 9 deleted, respectively. In situ hybridization studies were completed to determine the differential expression of Galphai2 between the vestibular primary afferent neurons and the vestibular end organs. Computer modeling and predicted 3D conformation of the wild type Galphai2 and the two splice variants were completed to evaluate the changes associated with the Gbetagamma and GTP binding sites. These two novel alternatively spliced isoforms of Galphai2 putatively encode truncated proteins that could serve unique roles in the physiology of the vestibular neuroepithelium. Galphai2vest was found to be a processed pseudogene.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbrainres.2005.02.024DOI Listing

Publication Analysis

Top Keywords

splice variants
12
rat vestibular
12
genbank accession
12
accession number
12
vestibular periphery
8
gtp binding
8
galphai2 splice
8
exons deleted
8
vestibular
6
galphai2
5

Similar Publications

Variants in the hereditary cancer-associated and genes can alter RNA splicing, producing transcripts that encode internally truncated yet potentially functional proteins. However, few studies have quantitatively analyzed variant-specific splicing isoforms. Here, we investigated cells heterozygous and homozygous for the :c.

View Article and Find Full Text PDF

Introduction: Nevoid basal cell carcinoma syndrome (NBCCS) is a rare autosomal dominant disorder classically associated with multiple basal cell carcinomas, odontogenic keratocysts and skeletal anomalies. However, its significant phenotypic heterogeneity often delays the diagnosis. Here, we undertake the first comprehensive characterisation of NBCCS and congenital urinary tract anomalies.

View Article and Find Full Text PDF

Background & objectives Alkaptonuria (AKU) is an autosomal recessive disease wherein biallelic pathogenic variants in the homogentisate 1,2- dioxygenase (HGD) gene encoding the enzyme homogentisate 1,2 dioxygenase cause high levels of homogentisic acid (HGA) to circulate within the body leading to its deposition in connective tissues and excretion in urine. A homozygous splice donor variant (c.87+1G>A) has been identified to be the founder variant causing alkaptonuria among Narikuravars, a group of gypsies settled in Tamil Nadu.

View Article and Find Full Text PDF

Loeys-Dietz syndrome (LDS) is a connective tissue disorder representing a wide spectrum of phenotypes, ranging from isolated thoracic aortic aneurysm or dissection to a more severe syndromic presentation with multisystemic involvement. Significant clinical variability has been noted for both related and unrelated individuals with the same pathogenic variant. We report a family of five affected individuals with notable phenotypic variability who appear to have two distinct molecular causes of LDS, one attributable to a missense variant in and the other an intronic variant 6 bp upstream from a splice junction in .

View Article and Find Full Text PDF

Insights into targeting LKB1 in tumorigenesis.

Genes Dis

March 2025

The Mary & John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, ON N6A 4L6, Canada.

Genetic alterations to serine-threonine kinase 11 () have been implicated in Peutz-Jeghers syndrome and tumorigenesis. Further exploration of the context-specific roles of liver kinase B1 (LKB1; encoded by ) observed that it regulates AMP-activated protein kinase (AMPK) and AMPK-related kinases. Given that both migration and proliferation are enhanced with the loss of LKB1 activity combined with the prevalence of genetic alterations in cancer biopsies, LKB1 was marked as a tumor suppressor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!