Modulation of the TGFbeta/Smad signaling pathway in mesangial cells by CTGF/CCN2.

Exp Cell Res

Cell and Molecular Biology Section, Division of Biomedical Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7 2AZ, UK.

Published: July 2005

Transforming growth factor-beta (TGFbeta) drives fibrosis in diseases such as diabetic nephropathy (DN). Connective tissue growth factor (CTGF; CCN2) has also been implicated in this, but the molecular mechanism is unknown. We show that CTGF enhances the TGFbeta/Smad signaling pathway by transcriptional suppression of Smad 7 following rapid and sustained induction of the transcription factor TIEG-1. Smad 7 is a known antagonist of TGFbeta signaling and TIEG-1 is a known repressor of Smad 7 transcription. CTGF enhanced TGFbeta-induced phosphorylation and nuclear translocation of Smad 2 and Smad 3 in mesangial cells. Antisense oligonucleotides directed against TIEG-1 prevented CTGF-induced downregulation of Smad 7. CTGF enhanced TGFbeta-stimulated transcription of the SBE4-Luc reporter gene and this was markedly reduced by TIEG-1 antisense oligonucleotides. Expression of the TGFbeta-responsive genes PAI-1 and Col III over 48 h was maximally stimulated by TGFbeta+CTGF compared to TGFbeta alone, while CTGF alone had no significant effect. TGFbeta-stimulated expression of these genes was markedly reduced by both CTGF and TIEG-1 antisense oligonucleotides, consistent with the endogenous induction of CTGF by TGFbeta. We propose that under pathological conditions, where CTGF expression is elevated, CTGF blocks the negative feedback loop provided by Smad 7, allowing continued activation of the TGFbeta signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2005.03.022DOI Listing

Publication Analysis

Top Keywords

signaling pathway
12
antisense oligonucleotides
12
ctgf
9
tgfbeta/smad signaling
8
mesangial cells
8
tgfbeta signaling
8
ctgf enhanced
8
markedly reduced
8
tieg-1 antisense
8
smad
7

Similar Publications

Objective: Juvenile dermatomyositis (JDM) is a complex autoimmune disease, and its pathogenesis remains poorly understood. Building upon previous research on the immunological and inflammatory aspects of JDM, this study aims to investigate the role of pyroptosis in the pathogenesis of JDM using a comprehensive bioinformatics approach.

Methods: Two microarray datasets (GSE3307 and GSE11971) were obtained from the Gene Expression Omnibus database, and a list of 62 pyroptosis-related genes was compiled.

View Article and Find Full Text PDF

Introduction: The mechanism of remimazolam, a benzodiazepine that activates γ-aminobutyric acid a (GABAa) receptors, in cerebral ischemia/reperfusion (I/R) injury is not well understood. Therefore, we explored whether remimazolam activates protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid 2-related factor 2 (NRF2) to attenuate brain I/R injury in transcerebral I/R-injured rats and transoxygenic glucose deprivation/reperfusion (OGD/R)-injured SY5Y cells.

Material And Methods: Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment.

View Article and Find Full Text PDF

Interleukin-1 receptor-related kinase (IRAK4) is a widely expressed serine/threonine kinase involved in the regulation of innate immunity. IRAK4 plays a pivotal role as a key kinase within the downstream signaling pathway cascades of interleukin-1 receptors (IL-1R) and Toll-like receptors (TLRs). The signaling pathways orchestrated by IRAK4 are integral to inflammatory responses, and its overexpression is implicated in the pathogenesis of inflammatory diseases, autoimmune disorders, and cancer.

View Article and Find Full Text PDF

Discovery of a potent PROTAC degrader for RNA demethylase FTO as antileukemic therapy.

Acta Pharm Sin B

December 2024

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.

The fat mass and obesity-associated protein (FTO) is an RNA demethylase required for catalytic demethylation of -methyladenosine (mA); it is highly expressed and functions as an oncogene in acute myeloid leukemia (AML). Currently, the overarching objective of targeting FTO is to precisely inhibit the catalytic activity. Meanwhile, whether FTO degradation also exerts antileukemic effects remains unknown.

View Article and Find Full Text PDF

This study investigated the ameliorative effects of Yinchen lipid-lowering tea (YCLLT) on Non-alcoholic fatty liver disease (NAFLD), the specific mechanism involved was also studied. We modeled hepatocellular steatosis with HepG2 cells and intervened with different concentrations of YCLLT-containing serum. Lipid deposition was assessed by oil red O staining and AdipoR1 expression was analyzed by Western blot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!