Structures responsible for the onset, propagation, and cessation of generalized seizures are not known. Lesion and microinfusion studies suggest that the substantia nigra pars reticulata (SNR) seizure-controlling network could play a key role. However, the expression of neural activity within the SNR and its targets during discrete pre- and postictal periods has not been investigated. In rats, we used flurothyl to induce generalized seizures over a controlled time period and 2-deoxyglucose autoradiography mapping technique. Changes in neural activity within the SNR were region-specific. The SNRposterior was selectively active during the pre-clonic period and may represent an early gateway to seizure propagation. The SNRanterior and superior colliculus changed their activity during progression to tonic-clonic seizure, suggesting the involvement in coordinated regional activity that results in inhibitory effects on seizures. The postictal suppression state was correlated with changes in the SNR projection targets, specifically the pedunculopontine tegmental nucleus and superior colliculus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1578684PMC
http://dx.doi.org/10.1016/j.nbd.2005.05.007DOI Listing

Publication Analysis

Top Keywords

neural activity
12
substantia nigra
8
generalized seizures
8
activity snr
8
superior colliculus
8
activity
5
regional neural
4
activity substantia
4
nigra peri-ictal
4
peri-ictal flurothyl
4

Similar Publications

Post-traumatic stress and major depressive disorders are associated with "overgeneral" autobiographical memory, or impaired recall of specific life events. Interpersonal trauma exposure, a risk factor for both conditions, may influence how symptomatic trauma-exposed (TE) individuals segment everyday events. The ability to parse experience into units (event segmentation) supports memory.

View Article and Find Full Text PDF

Systemic regulation of retinal medium-chain fatty acid oxidation repletes TCA cycle flux in oxygen-induced retinopathy.

Commun Biol

January 2025

Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, 02111, USA.

Activation of anaplerosis takes away glutamine from the biosynthetic pathways to the energy-producing TCA cycle. Especially, induction of hyperoxia driven anaplerosis in neurovascular tissues such as the retina during early stages of development could deplete biosynthetic precursors from newly proliferating endothelial cells impeding physiological angiogenesis and leading to vasoobliteration. Using an oxygen-induced retinopathy (OIR) mouse model, we investigated the metabolic differences between OIR-resistant BALB/cByJ and OIR susceptible C57BL/6J strains at system levels to understand the molecular underpinnings that potentially contribute to hyperoxia-induced vascular abnormalities in the neural retina.

View Article and Find Full Text PDF

Approaches of promoting a neural milieu permissive for plasticity and resilience against neuronal injury are important strategies for the treatment of a range of neurological disorders. Fibroblast growth factor 21 (FGF21) which is known for its role as a potent regulator of glucose and energy metabolism has also proved to be neuroprotective against various mental diseases. However, the underlying molecular mechanisms remain elusive.

View Article and Find Full Text PDF

Suppression of epileptic seizures by transcranial activation of K-selective channelrhodopsin.

Nat Commun

January 2025

Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.

Optogenetics is a valuable tool for studying the mechanisms of neurological diseases and is now being developed for therapeutic applications. In rodents and macaques, improved channelrhodopsins have been applied to achieve transcranial optogenetic stimulation. While transcranial photoexcitation of neurons has been achieved, noninvasive optogenetic inhibition for treating hyperexcitability-induced neurological disorders has remained elusive.

View Article and Find Full Text PDF

Subthalamic nucleus deep brain stimulation in the beta frequency range boosts cortical beta oscillations and slows down movement.

J Neurosci

January 2025

Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Germany

Recordings from Parkinson's disease (PD) patients typically show strong beta-band oscillations (13-35Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100Hz) ameliorates motor symptoms and reduces beta activity in basal ganglia and motor cortex, the effects of low-frequency DBS (<30Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!