Objective: The aim of our study was to evaluate lipid peroxidation products and antioxidant enzyme activity in placental tissue and umbilical cord blood, as a marker for fetal hypoxia in patients in labor with nonreassuring fetal status.

Study Design: Umbilical cord arterial blood and placental tissue samples were collected from 24 patients with term pregnancies in labor and nonreassuring fetal heart rate (FHR) patterns (study) and 24 women with normal pregnancies in labor and normal FHR tracings (controls) for determination of malondialdehyde (MDA) as a marker for lipid peroxidation and superoxide dismutase (SOD) for the antioxidant activity. Measured values were compared statistically between two groups using independent samples t-test or Mann-Whitney U-test.

Results: The median 1min Apgar score was 8 (range 4-9) in the study group and 9 (range 8-10) in the control group, respectively (p < 0.001). There was no statistically significant difference between study and control groups in terms of mean 5 min Apgar scores (p > 0.05). Placental MDA levels in patients with nonreassuring fetal status were found to be significantly elevated compared to the control group (12.14 nmol/g tissue versus 9.75 nmol/g tissue; p < 0.01). The placental SOD activity in the study group was significantly higher (p < 0.01) compared to controls (3.57 U/mg protein versus 2.63 U/mg protein). The umbilical cord blood MDA levels in the study group were higher than in normal pregnancies (4.99 nmol/mL, 3.88 nmol/mL; p < 0.05). The activity of SOD in umbilical cord blood was significantly higher (p < 0.001) in patients with nonreassuring fetal status when compared with the control group (11.62 versus 6.95 U/mL).

Conclusion: Lipid peroxidation products and antioxidant functions were elevated in the umbilical cord blood and placenta of patients having nonreassuring FHR tracings during labor. These findings indicate that lipid peroxidation products in placenta and umbilical cord blood can be used as a possible marker for fetal hypoxia during labor and SOD levels may discriminate acute from chronic hypoxia. Further investigations are needed with large number of series to clarify the variations of lipid peroxidation and antioxidant activity due to acute or chronic fetal hypoxia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejogrb.2005.04.014DOI Listing

Publication Analysis

Top Keywords

lipid peroxidation
24
umbilical cord
24
nonreassuring fetal
20
cord blood
20
antioxidant activity
12
labor nonreassuring
12
fetal status
12
peroxidation products
12
fetal hypoxia
12
study group
12

Similar Publications

Hederagenin ameliorates ferroptosis-induced damage by regulating PPARα/Nrf2/GPX4 signaling pathway in HT22 cells: An in vitro and in silico study.

Bioorg Chem

December 2024

Institute of Geriatrics, The 2nd Medical Center, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China. Electronic address:

Background: Hederagenin (HG), derived from ivy seeds, is known to offer protection against Alzheimer's disease (AD). However, the specific molecular pathways through which it counters ferroptosis-induced neurotoxicity are not fully elucidated. This investigation seeks to delineate the processes by which HG mitigates neurotoxic effects in HT22 cells subjected to glutamate (Glu)-induced ferroptosis.

View Article and Find Full Text PDF

Background: Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.

View Article and Find Full Text PDF

Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage.

View Article and Find Full Text PDF

Erastin, as an effective ferroptosis inducer, has received extensive attention in anti-tumor research. To develop an oral nanocarrier for high efficient loading hydrophobic erastin, here we prepared a fluoro-liposome (FA-3 F-LS) by the self-assembly of the folic acid modified fluorinated amphiphiles-FA-3 F conjugates. The hydrophobic component of three perfluorooctyl chains endows the FA-3 F-LSs with high stability to resist the harsh gastrointestinal tract condition.

View Article and Find Full Text PDF

The function of SnRK1 in regulating darkness-induced leaf senescence in cucumber.

Plant Physiol Biochem

December 2024

College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China. Electronic address:

SnRK1 (SNF1-related kinase 1), a member of the SNF1 protein kinase superfamily, has been demonstrated to play a role in plant growth and development, as well as in stress responses. In this experiment, the leaf senescence of 'Xintaimici' cucumber was simulated by dark treatment and studied using SnRK1 activator/inhibitor and transient transformation technology. The effects of SnRK1 on cucumber leaf senescence, reactive oxygen species (ROS) metabolism, chloroplast structure, and photosynthetic characteristics were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!