DNA double-strand breaks (DSBs) are formed during the processing of DNA interstrand crosslinks in replicating yeast and Chinese hamster cells exposed to DNA crosslinkers such as psoralen plus UVA or nitrogen mustard. They were also detected in human cells after treatment with photoactivated psoralen or mitomycin C. In contrast, no DSBs were observed after exposure of Chinese hamster cells to cisplatin, another crosslinking agent widely used for the therapy of various cancers, challenging a common role for DSBs in the processing of DNA interstrand crosslinks. Here we report for the first time that cisplatin-mediated DSBs are induced in replicating but not quiescent cells of the yeast Saccharomyces cerevisiae. When the main pathway of repair of DSBs is inhibited, these breaks accumulate in replicating cells. Thus it appears that DNA interstrand crosslinks induced by different crosslinking agents, including cisplatin, are processed yielding DSBs as an intermediate lesion. In stationary cells, however, removal of DNA interstrand crosslinks after cisplatin treatment occurs without the formation of DSBs. These findings point to an altered mode of processing of cisplatin-DNA adducts in replicating versus quiescent cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2005.04.015DOI Listing

Publication Analysis

Top Keywords

dna interstrand
16
interstrand crosslinks
16
quiescent cells
12
dna double-strand
8
double-strand breaks
8
replicating quiescent
8
cells
8
cells yeast
8
yeast saccharomyces
8
saccharomyces cerevisiae
8

Similar Publications

DNA replication represents a series of precisely regulated events performed by a complex protein machinery that guarantees accurate duplication of the genetic information. Since DNA replication is permanently faced by a variety of exogenous and endogenous stressors, DNA damage response, repair and replication must be closely coordinated to maintain genomic integrity. HROB has been identified recently as a binding partner and activator of the Mcm8/9 helicase involved in DNA interstrand crosslink (ICL) repair.

View Article and Find Full Text PDF

: DNA damage response (DDR) is a network of molecular pathways associated with the pathogenesis and progression of several diseases, as well as the outcome of chemotherapy. Moreover, the intracellular redox status is essential for maintaining cell viability and controlling cellular signaling. Herein, we analyzed DDR signals and redox status in peripheral blood mononuclear cells (PBMCs) from patients with lung cancer with different response rates to platinum-based chemotherapy.

View Article and Find Full Text PDF

Counterintuitive DNA destabilization by monovalent salt at high concentrations due to overcharging.

Nat Commun

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.

Monovalent salts are generally believed to stabilize DNA duplex by weakening inter-strand electrostatic repulsion. Unexpectedly, our force-induced hairpin unzipping experiments and thermal melting experiments show that LiCl, NaCl, KCl, RbCl, and CsCl at concentrations beyond ~1 M destabilize DNA, RNA, and RNA-DNA duplexes. The two types of experiments yield different changes in free energy during melting, while the results that high concentration monovalent salts destabilize duplexes are common.

View Article and Find Full Text PDF

Broad repression of DNA repair genes in senescent cells identified by integration of transcriptomic data.

Nucleic Acids Res

January 2025

The David and Inez Myers Laboratory for Cancer Research,  Tel Aviv University, Tel Aviv 6997801, Israel.

Cellular senescence plays a significant role in tissue aging. Senescent cells, which resist apoptosis while remaining metabolically active, generate endogenous DNA-damaging agents, primarily reactive oxygen species. Efficient DNA repair is therefore crucial in these cells, especially when they undergo senescence escape, resuming DNA replication and cellular proliferation.

View Article and Find Full Text PDF

A Photoinducible DNA Cross-Linking Agent with Potent Cytotoxicity and Selectivity Toward Triple-Negative Breast Cancer Cell Line.

Chem Res Toxicol

December 2024

Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States.

DNA interstrand cross-links (ICLs) are the sources of the cytotoxicity of many anticancer agents. Selenium compounds showed great potential as anticancer drugs. In this work, we synthesized a binaphthalene analog containing phenyl selenide (-SePh) as the leaving group and investigated its photochemical reactivity toward DNA as well as its cytotoxicity and selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!