Objective: Proliferation of vascular smooth muscle cells (VSMC) is involved in the pathogenesis of primary atherosclerosis and restenosis after angioplasty. On the background of the antiproliferative activities of caveolin-1, the present study focused on the expression of caveolin-1 in proliferating VSMC of human atheroma.

Methods: VSMC were isolated from wild-type (Wt) and caveolin-1 knockout mice (Cav-/-). Proliferation of Wt-VSMC after supplementation of serum or Cav-/-VSMC after adenoviral overexpression of caveolin-1 was documented by either Western blot analysis of the cyclin-dependent kinase (Cdk) inhibitor p27kip1 and the proliferating cell nuclear antigen (PCNA) or BrdU incorporation. Using immunohistochemistry the proliferation of VSMC derived from atheroma of human carotid vessels as well as the expression of caveolin-1 in these cells were investigated ex vivo.

Results: Supplementation of serum to Wt-VSMC resulted in an augmented cell cycle entry and a concomitant decrease of caveolin-1 expression. Inversely, adenoviral overexpression of caveolin-1 in Cav-/-VSMC inhibited cellular proliferation. Corresponding to these in vitro data, the expression of caveolin-1 was significantly decreased in proliferating VSMC of human atheroma.

Conclusion: The proliferation of VSMC in vitro and in human atheroma is associated with a decrease of caveolin-1 expression. These data suggest that the loss of antiproliferative control by caveolin-1 plays a pivotal role in VSMC proliferation in atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cardiores.2005.05.004DOI Listing

Publication Analysis

Top Keywords

expression caveolin-1
12
caveolin-1
10
loss antiproliferative
8
antiproliferative control
8
vascular smooth
8
smooth muscle
8
muscle cells
8
proliferating vsmc
8
vsmc human
8
supplementation serum
8

Similar Publications

Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.

View Article and Find Full Text PDF

Caveolin-1 mitigates the advancement of metabolic dysfunction-associated steatotic liver disease by reducing endoplasmic reticulum stress and pyroptosis through the restoration of cholesterol homeostasis.

Int J Biol Sci

January 2025

Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide, which has the potential to advance to fibrosis. CAV1 has the effects of improving liver lipid deposition in MASLD, however, the potential mechanism is largely unknown. Here, we establish a MASLD mouse model in CAV1 knockout (KO) mice and perform transcriptome analysis on livers from mice to investigate the effects of CAV1 in MASLD progression.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells (BMSCs) -derived extracellular vesicles (EVs), especially small EVs (sEVs), were vastly reported to enable multiple restorative effects on ischemic stroke, yet the protective mechanism of blood-brain barrier (BBB) has not been fully illustrated. In the present study, we investigated the therapeutic effects and mechanism of BMSCs-derived sEVs on BBB injury after ischemic stroke. In-vivo, administering sEVs to transient middle cerebral artery occlusion (tMCAo) mice mitigated the brain infarct volume, BBB permeability and neural apoptosis, and improved the cerebral blood flow perfusion and neurological function.

View Article and Find Full Text PDF

Abnormal ac4C modification in metabolic dysfunction associated steatotic liver cells.

Sci Rep

January 2025

Department of Pharmacy, Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China.

The pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) remains unclear due to the complexity of its etiology. The emerging field of the epitranscriptome has shown significant promise in advancing the understanding of disease pathogenesis and developing new therapeutic approaches. Recent research has demonstrated that N4-acetylcytosine (ac4C), an RNA modification within the epitranscriptome, is implicated in progression of various diseases.

View Article and Find Full Text PDF

Ferroptosis plays a role in tumorigenesis by affecting lipid peroxidation and metabolic pathways; however, its prognostic or therapeutic relevance in pancreatic adenocarcinoma (PAAD) remains poorly understood. In this study, we developed a prognostic ferroptosis-related gene (FRG)-based risk model using cohorts of The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), proposing plausible therapeutics. Differentially expressed FRGs between tumors from TCGA-PAAD and normal pancreatic tissues from Genotype-Tissue Expression were analyzed to construct a prognostic risk model using univariate and multivariate Cox regression and LASSO analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!