Assessing the concentration of potentially harmful heavy metals in the soil of urban parks is imperative in order to evaluate the potential risks to residents and tourists. To date, little research on soil pollution in China's urban parks has been conducted. To identify the concentrations and sources of heavy metals, and to assess the soil environmental quality, samples were collected from 30 urban parks located in the city of Beijing. Subsequently, the concentrations of Cu, Ni, Pb and Zn in the samples were analyzed. The investigation revealed that the accumulations of Cu and Pb were readily apparent in the soils. The integrated pollution index (IPI) of these four metals ranged from 0.97 to 9.21, with the highest IPI in the densely populated historic center district (HCD). Using multivariate statistic approaches (principal components analysis and hierarchical cluster analysis), two factors controlling the heavy metal variability were obtained, which accounted for nearly 80% of the total variance. Nickel and Zn levels were controlled by parent material in the soils, whereas Cu, Pb and, in part, Zn were accounted for mainly by anthropogenic activities. The findings presented here indicate that the location and the age of the park are important factors in determining the extent of heavy metal, particularly Cu and Pb, pollution. In addition, the accumulation of Zn did not appear to reach pollution levels, and no obvious pollution by Ni was observed in the soils of the parks in Beijing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2004.12.072DOI Listing

Publication Analysis

Top Keywords

urban parks
16
heavy metal
12
metal pollution
8
parks beijing
8
heavy metals
8
pollution
6
parks
5
assessment heavy
4
pollution surface
4
soils
4

Similar Publications

The Characteristics, Sources, and Health Risks of Volatile Organic Compounds in an Industrial Area of Nanjing.

Toxics

November 2024

Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.

This study investigates the chemical complexity and toxicity of volatile organic compounds (VOCs) emitted from national petrochemical industrial parks and their effects on air quality in an industrial area of Nanjing, China. Field measurements were conducted from 1 December 2022, to 17 April 2023, focusing on VOC concentrations and speciations, diurnal variations, ozone formation potential (OFP), source identification, and associated health risks. The results revealed an average total VOC (TVOC) concentration of 15.

View Article and Find Full Text PDF

Urban parks and cemeteries constitute hot spots of bird diversity in urban areas. However, the seasonal dynamics of their bird communities have been scarcely explored at large scales. This study aims to analyze the drivers of urban bird assemblage seasonality in urban parks and cemeteries comparing assemblages during breeding and non-breeding seasons in the Neotropical Region.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined seasonal and daily changes in soil CO2 flux (Fc) at Kaziranga National Park between November 2019 and March 2020, identifying pre-monsoon as the peak season for carbon release.
  • Fc showed strong positive correlations with air and soil temperatures, solar radiation, vapor pressure deficit, and photosynthetically active radiation, indicating these elements significantly influence soil respiration rates.
  • Diurnal patterns highlighted higher Fc during daytime hours and lower levels at night, emphasizing how environmental factors affect carbon dynamics in subtropical forests.
View Article and Find Full Text PDF

Autumn and winter air phytofiltration - Are plants able to biofilter air during peak pollutant emissions?

J Environ Manage

January 2025

Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland; Centre for Climate Research SGGW, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland. Electronic address:

Air pollution is highest in winter. The high concentration of particulate matter (PM) and trace elements (TE) after the growing season is influenced by increased pollutant emissions, unfavorable meteorological conditions, and the low efficiency of air phytofiltration. Plants that can remove pollutants from the air during the growing season are leafless in autumn/winter, and therefore unable to capture PM/TE effectively.

View Article and Find Full Text PDF

Large floods drive changes in cause-specific mortality in the United States.

Nat Med

January 2025

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.

Flooding greatly endangers public health and is an urgent concern as rapid population growth in flood-prone regions and more extreme weather events will increase the number of people at risk. However, an exhaustive analysis of mortality following floods has not been conducted. Here we used 35.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!