The purpose of this study was to evaluate the involvement of the superoxide radical in glucose-induced cataract using lenses from mice lacking the cytosolic copper-zinc superoxide dismutase (SOD1). Lenses from wild-type mice and SOD1 null mice were kept in organ culture with either 5.6 or 55.6 mM glucose for 6 days. The cataract formation was followed with digital image analysis and ocular staging. The lens damage was further quantified by analysis of the leakage of lactate dehydrogenase into the medium by the uptake of 86Rb and by determining the water content of the lenses. The formation of superoxide radicals in the lenses was assessed with lucigenin-derived chemiluminescence. Immunohistochemical staining for SOD1 was also performed on murine lenses. The SOD1 null lenses exposed to high glucose developed more cataract showed an increased leakage of lactate dehydrogenase and developed more oedema compared to the control lenses. At 5.6 mM glucose there was no difference between the SOD1 null and wild-type lenses. Staining for SOD1 was seen primarily in the cortex of the wild-type lens. This in vitro model suggests an involvement of the superoxide radical and a protective effect of SOD1 in glucose-induced cataract formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2005.03.022 | DOI Listing |
Graefes Arch Clin Exp Ophthalmol
January 2025
National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.
Purpose: To investigate whether in diabetic cataract (DC), FoxO1 regulates high glucose (HG)-induced activation of NLRC4/IL-6 inflammatory mediators in human lens epithelial cells (SRA01/04) via the JAK1/STAT1 pathway, leading to cataract formation.
Methods: Expression levels of FoxO1, inflammatory factor IL-6 and inflammatory vesicle NLRC4 were examined in SRA01/04 under high glucose (HG) stress at 25-150 mM. Rat lenses were also cultured using HG medium with or without the addition of the FoxO1 inhibitor AS1842856 and the JAK1 agonist RO8191.
Tissue Cell
December 2024
Ophthalmology Department, Nanxishan Hospital of Guangxi Zhuang Autonomous Region (The second Hospital of Guangxi Zhuang Autonomous Region), Guilin, Guangxi 541000, China.
Background: Diabetic keratopathy is a prevalent but sometimes ignored visual condition in diabetic patients, which significantly affects patients with diabetes mellitus (DM) in terms of their visual acuity. Exosomes regulate diabetes-related conditions like diabetic keratopathy (DK) by secreting their components into the body.
Objective: Aim to investigate the effect and mechanism of mesenchymal stem cell (MSC)-derived exosome miR-125a-5p on DK.
J Transl Med
September 2024
Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
Background: The increasing incidence of diabetes mellitus has established diabetic cataracts (DC) as a significant worldwide public health issue. The mechanisms underlying DC remain unknown, and effective prevention and treatment strategies are lacking. Accordingly, we aimed to explore the role and mechanism behind N6-methyladenosine (m6A) in DC progression.
View Article and Find Full Text PDFCurr Eye Res
November 2024
Department of Ophthalmology, Jiujiang City Key Laboratory of Cell Therapy, JiuJiang NO.1 People's Hospital, Jiujiang, Jiangxi, China.
Purpose: Diabetic cataract (DC) is a major cause of blindness worldwide. Prion protein (PRNP) was proved to be up-regulated and hypomethylated in DC samples. Here, we investigated whether PRNP was involved in DC progression in N6-methyladenosine (m6A)-dependent manner, and its potential mechanisms.
View Article and Find Full Text PDFInt Ophthalmol
July 2024
Department of Ophthalmology, Ophthalmology Center, Taizhou Hospital of Zhejiang Province, 150 Ximen Street, Linhai, 317000, China.
Background: Diabetic cataract (DC) is a common complication of diabetes and its etiology and progression are multi-factorial. In this study, the roles of specific protein 1 (SP1) and fibroblast growth factor 7 (FGF7) in DC development were explored.
Methods: DC cell model was established by treating SRA01/04 cells with high glucose (HG).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!