After penetration into the lower airways, bacterial lipopolysaccharide (LPS) interacts with alveolar cells in a fluid environment consisting of pulmonary surfactant, a lipid-protein complex which prevents alveolar collapsing and participates in lung defense. The two hydrophilic surfactant components SP-A and SP-D are proteins with collagen-like and lectin domains (collectins) able to interact with carbohydrate-containing ligands present on microbial membranes, and with defined regions of LPS. This explains their capacity to damage the bacterial envelope and induce an antimicrobial effect. In addition, they modulate LPS-induced production of pro-inflammatory mediators in leukocytes by interaction with LPS or with leukocyte receptors. A third surfactant component, SP-C, is a small, highly hydrophobic lipopeptide which interacts with lipid A and reduces LPS-induced effects in macrophages and splenocyte cultures. The interaction of the different SPs with CD14 might explain their ability to modulate some LPS responses. Although the alveolar fluid contains other antiLPS and antimicrobial agents, SPs are the most abundant proteins which might contribute to protect the lung epithelium and reduce the incidence of LPS-induced lung injury. The presence of the surfactant collectins SP-A and SP-D in non-pulmonary tissues, such as the female genital tract, extends their field of action to other mucosal surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1179/096805105X37358 | DOI Listing |
Nanotoxicology
January 2025
Infection, Inflammation and Repair, Faculty of Medicine, University of Southampton, Southampton, UK.
The role of surfactant proteins A and D (SP-A and SP-D) in lung clearance and translocation to secondary organs of inhaled nanoparticles was investigated by exposing SP-A and SP-D knockout (AKO and DKO) and wild type (WT) mice nose-only for 3 hours to an aerosol of 20 nm gold nanoparticles (AuNPs). Animals were euthanised at 0-, 1-, 7- and 28-days post-exposure. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) of the liver and kidneys showed that extrapulmonary translocation was below the limits of detection.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, USA.
Since its outbreak, the novel coronavirus (COVID-19) has significantly impacted the pediatric population. Pulmonary surfactant dysfunction has been linked to other respiratory diseases in children and COVID-19 in adults, but its role in COVID-19 severity remains unclear. We hypothesized that elevated surfactant protein (SP) levels and single nucleotide polymorphisms (SNPs) of SP genes are associated with severe COVID-19 in children.
View Article and Find Full Text PDFFront Immunol
January 2025
Department Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates.
Surfactant protein D (SP-D) is a C-type lectin that was originally discovered as a lung surfactant associated phospholipid recognising protein. It was originally shown to be of great importance in surfactant turnover and homeostasis in conjunction with another hydrophilic surfactant protein i.e.
View Article and Find Full Text PDFPol J Vet Sci
September 2024
Department of Companion Animals and Horses, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria.
Rhodococcus equi (R. equi) is a primary cause of pyogranulomatous pneumonia of foals between three weeks and five months of age. Early diagnosis of rhodococcal pneumonia has always been considered a preferable approach as it can lead to more successful treatment and better outcomes.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom.
The vast majority of early-life hospital admissions globally highlight respiratory syncytial virus (RSV), the leading cause of neonatal lower respiratory tract infections, as the major culprit behind the poor neonatal outcomes following respiratory infections. Unlike those of older children and adults, the immune system of neonates looks rather unique, therefore mostly counting on the innate immune system and antibodies of maternal origins. The collaborations between cells and immune compartments during infancy inclines bias toward a T-helper 2 (Th2) immune profile and thereby away from a T-helper 1 (Th1) immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!