Chemotherapeutic agents for the treatment of solid cancers do not discriminate between malignant and normal tissue, but rather depend on the increased proliferation of tumour cells versus benign cells. To reach therapeutically active concentrations in the tumour, large doses of these rather unspecific compounds have to be given to the patient, often resulting in severe side effects. Therefore, the goal of modern cancer research is the development of highly selective compounds which are able to discriminate between tumour tissue and normal tissue. One promising approach in this direction is antibody-mediated targeted cancer therapy which may either block an important receptor-ligand interaction or deliver a therapeutically active molecule to an otherwise nonfunctional target. A prerequisite for such an approach is the tumour-selective expression of the respective target structure. This review discusses extra domain-B fibronectin as a promising target which is associated with tumour angiogenesis and tumour growth for the development of novel antibody-mediated therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/14728222.9.3.491 | DOI Listing |
BMC Pharmacol Toxicol
January 2025
Biochemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt.
Hepatic encephalopathy (HE) is a syndrome that arises from acute or chronic liver failure. This study was devised to assess the impact of a combination of boswellic acid (BA) and low doses of gamma radiation (LDR) on thioacetamide (TAA)-induced HE in an animal model. The effect of daily BA treatment (175 mg/kg body weight, for four weeks) and/or fractionated low-dose γ-radiation (LDR; 0.
View Article and Find Full Text PDFJ Transl Med
January 2025
School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550000, China.
Background: Human kinesin family member 11 (KIF11) plays a vital role in regulating the cell cycle and is implicated in the tumorigenesis and progression of various cancers, but its role in endometrial cancer (EC) is still unclear. Our current research explored the prognostic value, biological function and targeting strategy of KIF11 in EC through approaches including bioinformatics, machine learning and experimental studies.
Methods: The GSE17025 dataset from the GEO database was analyzed via the limma package to identify differentially expressed genes (DEGs) in EC.
BMC Vet Res
January 2025
Theriogenology Department, Faculty of Veterinary Medicine, New-Valley University, New Valley, 725211, Egypt.
Background: Saidi sheep are one of the most important farm animals in Upper Egypt, particularly in the Assiut governorate. Since they can provide meat, milk, fiber, and skins from low-quality roughages, sheep are among the most economically valuable animals bred for food in Egypt. Regarding breeding, relatively little is known about the Saidi breed.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
Background: Neuroimmune interaction is an underestimated mechanism for lung diseases, and cryoablation is a competitive advantageous technique than other non-pharmacologic interventions for peripheral nerve innervating the lung. However, a lack of cryodenervation model in laboratory rodents leads to the obscure mechanisms for techniques used in clinic.
Method: Herein, we developed a novel practical method for mouse peripheral nerve cryoablation, named visualized and simple cryodenervation (VSCD).
Mol Biol Rep
January 2025
Medical Genetic Ward, Faculty of Medicine, Imam Khomeini Hospital Complex, IKHC, Tehran University of Medical Sciences, Tehran, Iran.
Background: LncRNA PCAT-1 is known to promote cancer proliferation, invasion, and metastasis. However, its significance in HNSCC is not fully understood. This research investigates how the PCAT-1 / miR-145-5p / FSCN-1 axis promote HNSCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!