Novel metabolism of nitrogen in plants.

Z Naturforsch C J Biosci

Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan.

Published: June 2005

AI Article Synopsis

Article Abstract

Our previous study showed that approximately one-third of the nitrogen of 15N-labeled NO2 taken up into plants was converted to a previously unknown organic nitrogen (hereafter designated UN) that was not recoverable by the Kjeldahl method (Morikawa et al., 2004). In this communication, we discuss metabolic and physiological relevance of the UN based on our newest experimental results. All of the 12 plant species were found to form UN derived from NO2 (about 10-30% of the total nitrogen derived from NO2). The UN was formed also from nitrate nitrogen in various plant species. Thus, UN is a common metabolite in plants. The amount of UN derived from NO2 was greatly increased in the transgenic tobacco clone 271 (Vaucheret et al., 1992) where the activity of nitrite reductase is suppressed less than 5% of that of the wild-type plant. On the other hand, the amount of this UN was significantly decreased by the overexpression of S-nitrosoglutathione reductase (GSNOR). These findings strongly suggest that nitrite and other reactive nitrogen species are involved in the formation of the UN, and that the UN-bearing compounds are metabolizable. A metabolic scheme for the formation of UN-bearing compounds was proposed, in which nitric oxide and peroxynitrite derived from NO2 or endogenous nitrogen oxides are involved for nitrosation and/or nitration of organic compounds in the cells to form nitroso and nitro compounds, including N-nitroso and S-nitroso ones. Participation of non-symbiotic haemoglobin bearing peroxidase-like activity (Sakamoto et al., 2004) and GSNOR (Sakamoto et al., 2002) in the metabolism of the UN was discussed. The UN-bearing compounds identified to date in the extracts of the leaves of Arabidopsis thaliana fumigated with NO2 include a delta2-1,2,3-thiadiazoline derivative (Miyawaki et al., 2004) and 4-nitro-beta-carotene.

Download full-text PDF

Source
http://dx.doi.org/10.1515/znc-2005-3-411DOI Listing

Publication Analysis

Top Keywords

derived no2
16
un-bearing compounds
12
plant species
8
formation un-bearing
8
nitrogen
7
no2
6
compounds
5
novel metabolism
4
metabolism nitrogen
4
nitrogen plants
4

Similar Publications

Cardiovascular disease continues to be a major contributor to global morbidity and mortality, with environmental and occupational factors such as air pollution, noise, and shift work increasingly recognized as potential contributors. Using a two-sample Mendelian randomization (MR) approach, this study investigates the causal relationships of these risk factors with the risks of unstable angina (UA) and myocardial infarction (MI). Leveraging single nucleotide polymorphisms (SNPs) as genetic instruments, a comprehensive MR study was used to assess the causal influence of four major air pollutants (PM, PM, NO, and NO), noise, and shift work on unstable angina and myocardial infarction.

View Article and Find Full Text PDF

The current research focused on the synthesis of two series of pyrazole derivatives and evaluation of their insecticidal effectiveness. In the first series, seven pyrazole Schiff bases 3a-g were successfully synthesized with yields (79-95%) by condensing phenylfuran-2-carbaldehyde with substituted pyrazole rings. In the second series, eleven amino acid-pyrazole conjugates 6a-k were synthesized utilizing acetic acid, sulfuric acid, morpholine, and EDC.

View Article and Find Full Text PDF

Spatiotemporal estimates of anthropogenic NO emissions across China during 2015-2022 using a deep learning model.

J Hazard Mater

January 2025

Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai 202162, PR China. Electronic address:

As one of the significant air pollutants, nitrogen oxides (NO = NO + NO) not only pose a great threat to human health, but also contribute to the formation of secondary pollutants such as ozone and nitrate particles. Due to substantial uncertainties in bottom-up emission inventories, simulated concentrations of air pollutants using GEOS-Chem model often largely biased from those of ground-level observations. To address this issue, we developed a new deep learning model to simulate the inverse process of the GEOS-Chem model.

View Article and Find Full Text PDF

Low-energy electron driven reactions in 2-bromo-5-nitrothiazole.

J Chem Phys

January 2025

Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.

Thiazole derivatives are biologically relevant molecules, used also in pharmaceutical applications. Herein, we report results for electron attachment to 2-bromo-5-nitrothiazole (BNT) in the gas phase. Employing two crossed electron-molecule beam experiments, we determined the efficiency curves of various fragment anions as a function of the initial electron energy between about 0 and 10 eV as well as the emission angle and kinetic energy distributions of Br- and NO2- ions formed from a resonance near 4 eV.

View Article and Find Full Text PDF

Objective: We examined if racial residential segregation (RRS) - a fundamental cause of disease - is independently associated with air pollution after accounting for other neighborhood and individual-level sociodemographic factors, to better understand its potential role as a confounder of air pollution-health studies.

Methods: We compiled data from eight large cohorts, restricting to non-Hispanic Black and White urban-residing participants observed at least once between 1999 and 2005. We used 2000 decennial census data to derive a spatial RRS measure (divergence index) and neighborhood socioeconomic status (NSES) index for participants' residing Census tracts, in addition to participant baseline data, to examine associations between RRS and sociodemographic factors (NSES, education, race) and residential exposure to spatiotemporal model-predicted PM and NO levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!