Changes in the spatial expression of genes with aging in the mouse RPE/choroid.

Mol Vis

Department of Biological Chemistry, School of Medicine, University of California, Davis, CA 95616-8794, USA.

Published: June 2005

Purpose: We recently used microarray and reverse transcriptase PCR (RT-PCR) analysis to show an upregulation of cathepsin S (CatS) and glutathione peroxidase 3 (GPX3) in the aging mouse RPE/choroid. To evaluate the mRNA distribution and levels in the RPE and choroid, in situ hybridizations were performed.

Methods: Eye sections from 2-month-old and 24-month-old C57BL/6 mice were probed for CatS or GPX3 mRNA by in situ hybridization. The ratio of mRNA labeled cells to total cells counted per section was compared between the two age groups for the RPE and choroid separately.

Results: The CatS labeled RPE cell ratio increased significantly with age. The GPX3 labeled RPE cell ratio did not increase with age.

Conclusions: The increases in mRNA levels for CatS and GPX3 found in the aging C57BL/6 RPE/choroid appear to represent an increase in both the numbers of cells expressing these messages and an increase in the level of expression in individual cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

aging mouse
8
mouse rpe/choroid
8
gpx3 aging
8
rpe choroid
8
cats gpx3
8
labeled rpe
8
rpe cell
8
cell ratio
8
changes spatial
4
spatial expression
4

Similar Publications

Ca/Calmodulin-Dependent Protein Kinase II (CaMKII) Regulates Basal Cardiac Pacemaker Function: Pros and Cons.

Cells

December 2024

Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA.

The spontaneous firing of the sinoatrial (SA) node, the physiological pacemaker of the heart, is generated within sinoatrial nodal cells (SANCs) and is regulated by a "coupled-clock" pacemaker system, which integrates a "membrane clock", the ensemble of ion channel currents, and an intracellular "Ca clock", sarcoplasmic reticulum-generated local submembrane Ca releases via ryanodine receptors. The interactions within a "coupled-clock" system are modulated by phosphorylation of surface membrane and sarcoplasmic reticulum proteins. Though the essential role of a high basal cAMP level and PKA-dependent phosphorylation for basal spontaneous SANC firing is well recognized, the role of basal CaMKII-dependent phosphorylation remains uncertain.

View Article and Find Full Text PDF

Aging and chronic inflammation are associated with overabundant myeloid-primed multipotent progenitors (MPPs) amongst hematopoietic stem and progenitor cells (HSPCs). While HSC differentiation bias has been considered a primary cause of myeloid bias, whether it is sufficient has not been quantitatively evaluated. Here, we analyzed bone marrow data from the IκB- (Nfkbia+/-Nfkbib-/-Nfkbie-/-) mouse model of inflammation with elevated NFκB activity, which shows increased myeloid-biased MPPs.

View Article and Find Full Text PDF

Enhanced Osteoporosis Treatment via Nano Drug Coating Encapsulating GG.

ACS Appl Mater Interfaces

January 2025

Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Geriatric Diseases, School of Medicine, Chongqing University, Chongqing 404000, China.

Osteoporosis is the most common systemic skeletal disorder, particularly associated with aging and postmenopausal women. With the growing knowledge about the gut-bone axis, the therapeutic strategies for osteoporosis have been shifted toward regulating gut microbiota to promote positive bone metabolism. Although GG (LGG) is widely reported to positively regulate bone metabolism by restoring the dysbiotic microbiome, oral administration is associated with sensitivity to gastric fluid and low bioavailability.

View Article and Find Full Text PDF

The current mechanism by which aging reduces salivary secretion is unknown. This study investigates the mechanism of aging-related submandibular (SMG) dysfunction and evaluates the therapeutic potential of dental pulp stem cell-derived exosomes (DPSC-exos). We found that the stimulated salivary flow rate was significantly reduced in naturally aging and D-galactose-induced aging mice (D-gal mice) compared to control mice.

View Article and Find Full Text PDF

The decline of oocyte quality with advanced maternal age has a detrimental effect on female fertility. However, there is limited knowledge of therapeutic options and their mechanisms to improve oocyte quality in reproductively older women. In this study, we demonstrated that supplementation of salidroside improves the oocyte quality of reproductively old mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!