Chemically cross-linked polymers are inherently limited by stresses that are introduced by post-gelation volume changes during polymerization. It is also difficult to change a cross-linked polymer's shape without a corresponding loss of material properties or substantial stress development. We demonstrate a cross-linked polymer that, upon exposure to light, exhibits stress and/or strain relaxation without any concomitant change in material properties. This result is achieved by introducing radicals via photocleavage of residual photoinitiator in the polymer matrix, which then diffuse via addition-fragmentation chain transfer of midchain functional groups. These processes lead to photoinduced plasticity, actuation, and equilibrium shape changes without residual stress. Such polymeric materials are critical to the development of microdevices, biomaterials, and polymeric coatings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1110505 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.
Suppressing over-oxidation is a crucial challenge for various chemical intermediate synthesis in heterogeneous catalysis. The distribution of oxidative species and the substrate coverage, governed by the direction of electron transfer, are believed to influence the oxidation extent. In this study, we presented an experimental realization of surface coverage modulation on a photoelectrode using a photo-induced charge activation method.
View Article and Find Full Text PDFAdv Mater
December 2024
Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China.
Motion recognition based on vision detectors requires the synchronous encoding and processing of temporal and spatial information in wide wavebands. Here, the dual-waveband sensitive optoelectronic synapses performing as graded neurons are reported for high-accuracy motion recognition and perception. Wedge-shaped nanostructures are designed and fabricated on molybdenum disulfide (MoS) monolayers, leading to plasmon-enhanced wideband absorption across the visible to near-infrared spectral range.
View Article and Find Full Text PDFAdv Mater
December 2024
State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
2D-layered materials are recognized as up-and-coming candidates to overcome the intrinsic physical limitation of silicon-based devices. Herein, the coexistence of positive persistent photoconductivity (PPPC) and negative persistent photoconductivity (NPPC) in SnSe thin films prepared by pulsed laser deposition provides an excellent avenue for engineering novel devices. It is determined that surface oxygen is co-regulated by physisorption and chemisorption, and the NPPC is attributed to the photo-controllable oxygen desorption behavior.
View Article and Find Full Text PDFWater Res
February 2025
Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, PR China.
Dissolved organic matter (DOM) originating from microplastics (MPs-DOM) is increasingly recognized as a substantial component of aquatic DOM. The photochemistry of MPs-DOM, essential for understanding its environmental fate and impacts, remains largely unexplored. This study investigates the photochemical behaviors of MPs-DOM derived from two common plastics: polystyrene (PS) and polyvinyl chloride (PVC), which represent aromatic and aliphatic plastics, respectively.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, F-33400, Talence, France.
Polystyrene (PS) is a commodity plastic recalcitrant to chemical recycling or upcycling processes. Approaches aimed at deconstructing PS by photocatalytic means struggle to generate high-energy species capable of cleaving the robust C-H and C-C bonds of PS. We show that 9-mesityl-10-methylacridinium perchlorate (MA) is capable of upcycling various grades of PS substrates into up to 40 % benzoic acid (BAc), formic acid (FA) and small proportions of acetophenone (ACP), under visible light (456 nm) or through solar radiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!