A key adaptation enabling the fetus to survive in a limited energy environment may be the reprogramming of mitochondrial function, which can have deleterious effects. Critical questions are whether mitochondrial dysfunction progressively declines after birth, and if so, what mechanism might underlie this process. To address this, we developed a model of intrauterine growth retardation (IUGR) in the rat that leads to diabetes in adulthood. Reactive oxygen species (ROS) production and oxidative stress gradually increased in IUGR islets. ATP production was impaired and continued to deteriorate with age. The activities of complex I and III of the electron transport chain progressively declined in IUGR islets. Mitochondrial DNA point mutations accumulated with age and were associated with decreased mitochondrial DNA content and reduced expression of mitochondria-encoded genes in IUGR islets. Mitochondrial dysfunction resulted in impaired insulin secretion. These results demonstrate that IUGR induces mitochondrial dysfunction in the fetal beta-cell, leading to increased production of ROS, which in turn damage mitochondrial DNA. A self-reinforcing cycle of progressive deterioration in mitochondrial function leads to a corresponding decline in beta-cell function. Finally, a threshold in mitochondrial dysfunction and ROS production is reached, and diabetes ensues.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M505695200DOI Listing

Publication Analysis

Top Keywords

mitochondrial dna
16
mitochondrial dysfunction
16
mitochondrial function
12
iugr islets
12
mitochondrial
11
ros production
8
islets mitochondrial
8
iugr
5
progressive accumulation
4
accumulation mitochondrial
4

Similar Publications

Indian Himalayan Region (IHR) supports a plethora of biodiversity with a unique assemblage of many charismatic and endemic species. We assessed the genetic diversity, demographic history, and habitat suitability of blue sheep (Pseudois nayaur) in the IHR through the analysis of the mitochondrial DNA (mtDNA) control region (CR) and Cytochrome b gene, and 14 ecological predictor variables. We observed high genetic divergence and designated them into two genetic lineage groups, i.

View Article and Find Full Text PDF

Quantifying DNA Lesions and Circulating Free DNA: Diagnostic Marker for Electropathology and Clinical Stage of AF.

JACC Clin Electrophysiol

December 2024

Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Electronic address:

Background: Atrial fibrillation (AF) persistence is associated with molecular remodeling that fuels electrical conduction abnormalities in atrial tissue. Previous research revealed DNA damage as a molecular driver of AF.

Objectives: This study sought to explore the diagnostic value of DNA damage in atrial tissue and blood samples as an indicator of the prevalence of electrical conduction abnormalities and stage of AF.

View Article and Find Full Text PDF

: Periodontitis is an inflammatory disease induced by bacteria in dental plaque that can activate the host's immune-inflammatory response and invade the bloodstream. We hypothesized that a higher periodontal inflamed surface area (PISA) is associated with higher levels of inflammatory biomarkers, lower levels of antioxidants, and mitochondrial DNA copy number (mtDNAcn). : Using periodontal parameters, we calculated the PISA score, measured the levels of inflammatory biomarkers and antioxidants in the serum, and took buccal swabs for mtDNA and nuclear DNA (nDNA) extraction.

View Article and Find Full Text PDF

Adipose tissue, particularly white adipose tissue (WAT), plays a central role in energy storage and metabolic regulation. Excess WAT, especially visceral fat, is strongly linked to metabolic disorders such as obesity and type 2 diabetes. The browning of WAT, whereby white fat cells acquire characteristics of brown adipose tissue (BAT) with enhanced thermogenic capacity, represents a promising strategy to enhance metabolic health.

View Article and Find Full Text PDF

While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing on histopathology, inflammation in the lung, bronchoalveolar lavage fluid (BALF), and plasma, as well as oxidative stress, genotoxicity, mitochondrial dysfunction, and the expression of mitogen-activated protein kinases (MAPKs) in lung homogenates. Exposure to both O-WPS and R-WPS resulted in significant histological changes, including increased numbers of alveolar macrophages and lymphocytes, as well as interstitial fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!