Expression of the gamma-glutamylcysteine synthetase heavy subunit (gamma-GCSh), which encodes the rate-limiting enzymes for glutathione biosynthesis, is regulated by many cytotoxic agents. Moreover, gamma-GCSh mRNA expression is elevated in colorectal cancer, but how gamma-GCSh expression is regulated is not completely understood. By using actinomycin D, which inhibits new RNA synthesis, we showed that treatment of human colorectal cancer cells with the prooxidant sulindac increased the half-life of gamma-GCSh mRNA. By using a tetracycline-regulated gamma-GCSh mRNA assay system, we systematically dissected the cis-acting sequence and trans-acting factors that regulate the stability of gamma-GCSh by cytotoxic prooxidants. We demonstrated that a HuR recognition sequence, AUUUA, in the 3'-untranslated region is responsible for the decay of gamma-GCSh mRNA. Oxidative stress enhanced cytoplasmic content of HuR. Overexpression of HuR by transfection stabilized gamma-GCSh mRNA, whereas overexpression of a dominant-negative HuR mutant suppressed the induced stability. Furthermore, prooxidant-induced gamma-GCSh mRNA stabilization and HuR binding were blocked by p38 mitogen-activated protein kinase inhibitors. We provide the first evidence that reduction-oxidation regulation of gamma-GCSh expression, itself a reduction-oxidation sensor and regulator, is mediated at least in part by the p38 mitogen-activated protein kinase signaling through the HuR RNA-binding protein.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M413103200DOI Listing

Publication Analysis

Top Keywords

gamma-gcsh mrna
24
p38 mitogen-activated
12
mitogen-activated protein
12
protein kinase
12
gamma-gcsh
10
gamma-glutamylcysteine synthetase
8
synthetase heavy
8
heavy subunit
8
oxidative stress
8
kinase signaling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!