Gene disruption of Spred-2 causes dwarfism.

J Biol Chem

Institut für Klinische Biochemie und Pathobiochemie, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.

Published: August 2005

The impact of the fibroblast growth factor receptor 3 (FGFR3)-mediated signaling pathway on bone growth has been demonstrated by various genetic approaches. Overexpression of fibroblast growth factors (FGFs), several gain-of-function mutations in the FGFR3, and constitutive activation of mitogen-activated protein kinase (MAPK) kinase (MEK1) in chondrocytes have been shown to cause dwarfism in mice by activation of the MAPK signaling pathway. To investigate the previously reported inhibitory role of Spred in the FGFR3/MAPK pathway, we generated mice with a trapped Spred-2 gene. Here we show that lack of functional Spred-2 protein in mice caused a dwarf phenotype, similar to achondroplasia, the most common form of human dwarfism. Spred-2(-/-) mice showed reduced growth and body weight, they had a shorter tibia length, and showed narrower growth plates as compared with wild-type mice. We detected promoter activity and protein expression of Spred-2 in chondrocytes, suggesting an important function of Spred-2 in chondrocytes and bone development. Stimulation of chondrocytes with different FGF concentrations showed earlier and augmented ERK phosphorylation in Spred-2(-/-) chondrocytes in comparison to Spred-2(+/+) chondrocytes. Our observations suggest a model in which loss of Spred-2 inhibits bone growth by inhibiting chondrocyte differentiation through up-regulation of the MAPK signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M503640200DOI Listing

Publication Analysis

Top Keywords

signaling pathway
12
fibroblast growth
8
bone growth
8
mapk signaling
8
spred-2 chondrocytes
8
spred-2
6
growth
6
chondrocytes
6
mice
5
gene disruption
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!