Cells of the facultative photosynthetic bacterium Rhodobacter capsulatus (MT1131 strain) incubated with 10 microg ml-1 of the toxic oxyanion tellurite (TeO2-(3)) exhibited an increase in superoxide dismutase activity. The latter effect was also seen upon incubation with sublethal amounts of paraquat, a cytosolic generator of superoxide anions (O2-), in parallel with a strong increase in tellurite resistance (TeR). A mutant strain (CW10) deficient in SenC, a protein with similarities to peroxiredoxin/thiol:disulfide oxidoreductases and a homologue of mitochondrial Sco proteins, was constructed by interposon mutagenesis via the gene transfer agent system. Notably, the absence of SenC affected R. capsulatus resistance to periplasmic O2- generated by xanthine/xanthine oxidase but not to cytosolic O2- produced by paraquat. Further, the absence of SenC did not affect R. capsulatus tellurite resistance. We conclude that: (1) cytosolic-generated O2- enhances TeR of this bacterial species; (2) small amounts of tellurite increase SOD activity so as to mimic the early cell response to oxidative stress; (3) SenC protein is required in protection of R. capsulatus against periplasmic oxidative stress; and finally, (4) SenC protein is not involved in TeR, possibly because tellurite does not generate O-2 at the periplasmic space level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resmic.2005.03.011DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
senc protein
12
rhodobacter capsulatus
8
superoxide dismutase
8
dismutase activity
8
tellurite resistance
8
absence senc
8
tellurite
6
capsulatus
5
senc
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!