Olfactory deficits, observed in schizophrenia, may be associated with a disruption of synaptic transmission in the olfactory system. Using immunohistochemistry and optical densitometry, we assessed the integrity of the synaptic connection between olfactory receptor neurons and olfactory bulb target neurons in schizophrenia by comparing the level of eight proteins, expressed in the olfactory bulb glomeruli, among schizophrenia and control subjects. In schizophrenia, no change was observed in the levels of OMP, GAP43 and NCAM, proteins expressed by olfactory receptor neurons, suggesting an intact innervation of the olfactory bulb by these neurons. This was supported by the absence of change in calbindin level, which has been shown to decrease after the destruction of the olfactory epithelium. The level of synaptophysin, a pre-synaptic protein, was also unchanged. These findings suggested that axons of olfactory receptor neurons establish synapses with their olfactory bulb targets in schizophrenia. The absence of change in the level of poorly phosphorylated neurofilament of moderate and high molecular weight (NFM/HP) suggested no lack of dendritic innervation despite a previously seen reduction of glomerular MAP2 level in schizophrenia subjects. This and above findings were consistent with the absence of change in the level of beta-tubulin III, a protein expressed by neurons of both olfactory epithelium and bulb. Finally, we noted no significant decrease in trkB level, a neurotrophin receptor involved in the olfactory epithelium maintenance. This study showed no evidence of major structural alteration of the synapse between the olfactory epithelium and bulb in schizophrenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.schres.2005.04.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!