Chitosan as an antibacterial agent and heparin as an anti-adhesive agent were alternatively deposited onto aminolyzed poly(ethylene terephthalate) (PET) films to construct anti-adhesive and antibacterial multilayer films. The contact-angle and UV data verified the progressive buildup of the multilayer film by alternate deposition of the polyelectrolytes. The properties of multilayer films were investigated by contact angle, atomic force microscopy (AFM), lateral force microscopy (LFM) and UV spectra. The results of initial adhesion of Escherichia coli (E. coli) on PET substrates showed that the number of E. coli adhered onto the control PET was in a much greater extent than onto the chitosan/heparin multilayer films, and the number of adhesive bacteria decreased with a decrease in assembly pH. The in vitro antibacterial test indicated that a multilayer of chitosan/heparin could kill the bacteria effectively. The number of viable bacteria decreased by 7% after 7 h in contact with the control PET films, but by 46-68% for the multilayer-modified PET films. Only 3-8% of the cells were viable for the multilayer-modified PET films after 24h. It is interesting to find the assembly pH has a remarkable effect on the antibacterial property of the multilayer. The number of viable bacteria on the multilayer assembled at pH = 3.8, 2.9 and 6.0 decreased by 68%, 58% and 46%, respectively. Such an easy processing and shape-independent method to prepare an anti-adhesive and antibacterial surface may have good potential for surface modification of cardiovascular devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2005.04.034DOI Listing

Publication Analysis

Top Keywords

multilayer films
16
pet films
16
anti-adhesive antibacterial
12
multilayer
8
antibacterial multilayer
8
films
8
force microscopy
8
control pet
8
bacteria decreased
8
number viable
8

Similar Publications

Packaging films based on natural biopolymers often suffer from inadequate barrier and mechanical properties. To address these challenges, multilayer films have emerged as potential solutions. In this study, we prepared bilayer films using bitter vetch seed protein (BVSP) and polylactic acid (PLA).

View Article and Find Full Text PDF

Photochromic Sodalites: From Natural Minerals to Advanced Applied Materials.

Acc Chem Res

January 2025

Mineralogical Society of Antwerp, Boterlaarbaan 225, 2100 Deurne, Belgium.

ConspectusWhile photochromic natural sodalites, an aluminosilicate mineral, were originally considered as curiosities, articles published in the past ten years have radically changed this perspective. It has been proven that their artificial synthesis was easy and allowed compositional tuning. Combined with simulations, it has been shown that a wide range of photochromic properties were achievable for synthetic sodalites (color, activation energy, reversibility, etc.

View Article and Find Full Text PDF

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

Self-Assembling of Multilayered Polymorphs with Ion Beams.

Nano Lett

January 2025

Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway.

Polymorphism determines significant variations in materials' properties by lattice symmetry variation. If they are stacked together into multilayers, polymorphs may work as an alternative approach to the sequential deposition of layers with different chemical compositions. However, selective polymorph crystallization during conventional thin film synthesis is not trivial; changes of temperature or pressure when switching from one polymorph to another during synthesis may cause degradation of the structural quality.

View Article and Find Full Text PDF

Multilayer Graphene Stacked with Silver Nanowire Networks for Transparent Conductor.

Materials (Basel)

January 2025

Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.

A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!