Depressurization in military aircraft: rates, rapidity, and health effects for 1055 incidents.

Aviat Space Environ Med

Department of Graduate Education, USAF School of Aerospace Medicine, Brooks City-Base, TX 78235, USA.

Published: June 2005

Introduction: Aircraft cabin depressurization is a rare event but one which demands attention because of the grave potential for aircrew incapacity in flight. The purpose of the current study was to determine rates of depressurization incidents for U.S. military aircraft, to examine their causes, and to evaluate the medical importance of these incidents.

Methods: The U.S. Navy and U.S. Air Force safety center databases were searched for decompression incidents during FY1981-FY2003. A total of 1055 incidents were analyzed as to the cause, speed of onset, and adverse health effects (hypoxia, barotrauma, DCS, or any combination of these). The causes of each incident were identified and classified by aircraft type.

Results: The number of incidents per airframe varied from 1 (in many airframes) to 276 in the T-38. The number of total hours flown ranged from 16,332 in the T-6 to 8,101,607 in the C-130. The number of sorties flown ranged from 8800 in the B-2 to 3,543,061 in the C-130. Of 35 common airframes, 30 showed rates between 0 and 20 incidents per million flying hours. Depressurization was "slow" in 83% of incidents. Of the 1055 incidents, only 350 (33.2%) involved adverse health effects. Hypoxia occurred in 221 incidents, DCS in 83, and barotrauma in 71. Only 4 (0.4%) resulted in a fatality. Of the 199 incidents involving hypoxia, 12 (6%) occurred below 4267 m (14,000 ft).

Conclusion: Most reported military aircraft depressurization incidents are slow and do not affect aircrew health. Rates have decreased dramatically since the 1980s. Still, this study lends support to continuing hypobaric chamber training for military pilots.

Download full-text PDF

Source

Publication Analysis

Top Keywords

military aircraft
12
health effects
12
1055 incidents
12
incidents
11
depressurization incidents
8
adverse health
8
effects hypoxia
8
flown ranged
8
hypoxia occurred
8
depressurization
5

Similar Publications

Introduction: Managing cognitive demand is critical for aviation safety. Yet, accurately assessing pilot workload during complex flight maneuvers remains challenging. This study evaluated an integrated methodology combining real-time cognitive engagement indicators to provide a comprehensive assessment and assess the reliability of physiological and subjective measures for monitoring operator state.

View Article and Find Full Text PDF

Introduction: Military pilots are subjected to unique pulmonary demands, particularly in high performance jets. The hypobaric environment necessitates use of on-board oxygen, breathing masks, and regulators to increase oxygen pressure, affecting ventilation and breathing responses. Safety features like pilot flight equipment and strapping into an ejection seat further impact pilot pulmonary function.

View Article and Find Full Text PDF

Introduction: As military environments integrate more complex technological systems, operators increasingly require more assistance from automation. When used properly, automation can significantly enhance performance; however, proper use is predicated on the operator's trust in the automation (TIA). TIA, like trust among people, is influenced by biological, psychosocial, and behavioral aspects.

View Article and Find Full Text PDF

Background: Ejection seats are designed to be a lifesaving device for aircrew in emergencies. Modern ejection seats are widely prevalent in fighter and bomber aircraft and are occasionally associated with acceleration injury from axial loading (Gz) during the catapult phase of ejection, limb flail injury due to windblast, or parachute landing fall, especially if the ejection is outside of the seat's performance envelope.

Case Report: We present the first known case in the medical literature of a military pilot who survived a low-altitude, high-angulation (>90° of bank angle) ejection where the pilot's ejection seat parachute did not deploy due to contact with the ground before completion of the ejection sequence.

View Article and Find Full Text PDF

Background: Arterial gas embolism (AGE) may occur while breathing compressed air and failing to exhale during ascent to compensate for gas expansion as pressure decreases. Trauma to the lungs from over-pressurization may result in air bubbles entering the pulmonary veins and subsequently the systemic circulation, causing obstructed blood flow and inflammatory cascades. AGEs are known to always manifest within 10 min of surfacing from depth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!