Rapid depigmentation of brown eggs is an infrequent but startling event in the commercial egg industry that can result in significant economic losses. Loss of shell pigment in brown-shelled eggs is caused by various factors. In many cases, the exact cause of flock-wide pigment loss remains undetermined. A rapid decline in shell pigmentation was observed in 2 flocks of Hyline brown layers. The lack of evidence of an infectious disease process suggested a feed or management problem. On the basis of a small-scale, "in-house" feeding trial, the feed was identified as the cause of depigmentation. Feed analysis by liquid chromatography with mass spectrometry confirmed the presence of 4,4'-dinitrocarbanilide, a major component of nicarbazin (NCZ). There was no evidence of increased mortality, and only a slight but transient drop in the egg production was observed. Depigmentation effects were rapidly reversed after replacing the feed with NCZ-free feed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/104063870501700315 | DOI Listing |
J Invertebr Pathol
January 2025
Department of Entomology and Acarology, Escola Superior de Agricultura 'Luiz de Queiroz', University of São Paulo (ESALQ-USP), Av. Pádua Dias, 11, Piracicaba, SP CEP 13418-900, Brazil.
The ovicidal effect of entomopathogenic fungi and the mechanisms involved are still debated. The hypothesis that the metabolic activity of germinating conidia can cause insect embryos to become unviable without physical penetration has been proposed. Here, we demonstrated that Metarhizium anisopliae and Metarhizium pingshaense, differently from Beauveria bassiana, reduced the percentage of nymphs hatching to less than 3%.
View Article and Find Full Text PDFInsects
January 2025
West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, CA 91761, USA.
is of great public health concern because of its vectorial capacity to transmit various arboviruses such as Zika, yellow fever, dengue, and chikungunya. In California, its expanding geographic distribution has been unrestrained. This urgently calls for innovative tools such as the use of sterile insect technique (SIT) to strengthen invasive control.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou, China.
The tea mosquito bug, Waterhouse (Hemiptera: Miridae), is a devastating piercing-sucking pest in tropical tea plantations. The Hainan Dayezhong (HNDYZ) is a large-leaf tea cultivar widely cultivated around the Hainan tea region in South China. However, information regarding the feeding damage of on the HNDYZ tea plant remains scarce.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
Glucose-6-phosphate isomerase (PGI), a key enzyme that catalyzes the reversible conversion of glucose-6-phosphate and fructose-6-phosphate, plays an important role in plant growth, development, and responses to abiotic stresses and pathogen infections. However, whether and how PGI modulates herbivore-induced plant defenses remain largely unknown. The Brown planthopper (BPH, ) is a devastating insect pest of rice, causing significant damage to rice plants through feeding, oviposition, and disease transmission, resulting in great yield losses.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Department of Agricultural Economics, Agriculture Faculty, Selçuk University, Konya 42130, Turkey.
The aim of this study was to compare the performance, egg quality and economic aspects of laying hybrids of different genotypes in free-range system. In the study, three different laying genotypes (Lohmann Brown, Lohmann Sandy and ATAK-S genotype) were used. Each group consisted of four replicates and each replicate contained 20 hens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!