Spectral-domain phase microscopy.

Opt Lett

Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA.

Published: May 2005

Broadband interferometry is an attractive technique for the detection of cellular motions because it provides depth-resolved phase information via coherence gating. We present a phase-sensitive technique called spectral-domain phase microscopy (SDPM). SDPM is a functional extension of spectral-domain optical coherence tomography that allows for the detection of nanometer-scale motions in living cells. The sensitivity of the technique is demonstrated, and its calibration is verified. A shot-noise limit to the displacement sensitivity of this technique is derived. Measurement of cellular dynamics was performed on spontaneously beating cardiomyocytes isolated from chick embryos.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.30.001162DOI Listing

Publication Analysis

Top Keywords

spectral-domain phase
8
phase microscopy
8
sensitivity technique
8
microscopy broadband
4
broadband interferometry
4
interferometry attractive
4
technique
4
attractive technique
4
technique detection
4
detection cellular
4

Similar Publications

Effect of siponimod on retinal thickness, a marker of neurodegeneration, in participants with SPMS: Findings from the EXPAND OCT substudy.

Mult Scler Relat Disord

January 2025

Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland.

Background: People with MS show abnormal thinning of the retinal layers, which is associated with clinical disability and brain atrophy, and is a potential surrogate marker of neurodegeneration and treatment effects.

Objective: To evaluate the utility of retinal thickness as a surrogate marker of neurodegeneration and treatment effect in participants with secondary progressive MS (SPMS) from the optical coherence tomography (OCT) substudy of the EXPAND Phase 3 clinical trial (siponimod versus placebo).

Methods: In the OCT substudy population (n = 159), treatment effects on change in the average thickness of the retinal layer, peripapillary retinal nerve fiber layer (pRNFL), and combined macular ganglion cell and inner plexiform layers (GCIPL) were analyzed by high-definition spectral domain OCT at months 3, 12, and 24.

View Article and Find Full Text PDF

XAI GNSS-A Comprehensive Study on Signal Quality Assessment of GNSS Disruptions Using Explainable AI Technique.

Sensors (Basel)

December 2024

LASSENA-Laboratory of Space Technologies, Embedded Systems, Navigation and Avionics, École de Technologie Supérieure (ETS), Montreal, QC H3C-1K3, Canada.

The hindering of Global Navigation Satellite Systems (GNSS) signal reception by jamming and spoofing attacks degrades the signal quality. Careful attention needs to be paid when post-processing the signal under these circumstances before feeding the signal into the GNSS receiver's post-processing stage. The identification of the time domain statistical attributes and the spectral domain characteristics play a vital role in analyzing the behaviour of the signal characteristics under various kinds of jamming attacks, spoofing attacks, and multipath scenarios.

View Article and Find Full Text PDF

: The objectives of this study were to evaluate the structural and functional outcomes after the loading phase with brolucizumab in switched patients with diabetic macular edema (DME) and to identify potential predictive biomarkers of treatment response. : A total of 28 eyes with DME, switched to brolucizumab, were retrospectively reviewed. Main outcomes during the follow-up period, up to 6 weeks after the fifth injection, included changes in best-corrected visual acuity (BCVA), central subfield thickness (CST), macular volume, subfoveal choroidal thickness, intraretinal and subretinal fluid (IRF and SRF), cyst dimension including maximal horizontal cyst diameter (MHCD), maximal vertical cyst diameter (MVCD), width-to-height ratio (WHR), foveal avascular zone (FAZ) dimension, and vessel density (VD).

View Article and Find Full Text PDF

Fast modulation of optical signals that carry multidimensional information in the form of wavelength, phase or polarization has fueled an explosion of interest in integrated photonics. This interest however masks a significant challenge which is that independent modulation of multi-wavelength carrier signals in a single waveguide is not trivial. Such challenge is attributed to the longitudinal direction of guided-mode propagation, limiting the spatial separation and modulation of electric-field.

View Article and Find Full Text PDF

Semiconducting halide perovskite nanoparticles support Mie-type resonances that confine light on the nanoscale in localized modes with well-defined spatial field profiles yet unknown near-field dynamics. We introduce an interferometric scattering-type near-field microscopy technique to probe the local electric field dynamics at the surface of a single MAPbI nanoparticle. The amplitude and phase of the coherent light scattering from such modes are probed in a broad spectral range and with high spatial resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!