At the boundary between the Palaeocene and Eocene epochs, about 55 million years ago, the Earth experienced a strong global warming event, the Palaeocene-Eocene thermal maximum. The leading hypothesis to explain the extreme greenhouse conditions prevalent during this period is the dissociation of 1,400 to 2,800 gigatonnes of methane from ocean clathrates, resulting in a large negative carbon isotope excursion and severe carbonate dissolution in marine sediments. Possible triggering mechanisms for this event include crossing a threshold temperature as the Earth warmed gradually, comet impact, explosive volcanism or ocean current reorganization and erosion at continental slopes, whereas orbital forcing has been excluded. Here we report a distinct carbonate-poor red clay layer in deep-sea cores from Walvis ridge, which we term the Elmo horizon. Using orbital tuning, we estimate deposition of the Elmo horizon at about 2 million years after the Palaeocene-Eocene thermal maximum. The Elmo horizon has similar geochemical and biotic characteristics as the Palaeocene-Eocene thermal maximum, but of smaller magnitude. It is coincident with carbon isotope depletion events in other ocean basins, suggesting that it represents a second global thermal maximum. We show that both events correspond to maxima in the approximately 405-kyr and approximately 100-kyr eccentricity cycles that post-date prolonged minima in the 2.25-Myr eccentricity cycle, implying that they are indeed astronomically paced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature03814 | DOI Listing |
Water Res
January 2025
UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster LA1 4AP, UK.
Anthropogenic inputs of nitrogen and phosphorus to lakes have increased worldwide, causing phytoplankton chlorophyll concentrations to increase at many sites, with negative implications for biodiversity and human usage of lake resources. However, the conversion of nutrients to chlorophyll varies among lakes, hindering effective management actions to improve water quality. Here, using a rich global dataset, we explore how the relationship between chlorophyll-a (Chla) and nitrogen and phosphorus and inferred nutrient limitation is modified by climate, catchment, hydrology and lake characteristics.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
One notable consequence of climate change is an increase in the frequency, scale and severity of heat waves. Heat waves in terrestrial habitats (atmospheric heat waves, AHW) and marine habitats (marine heat waves, MHW) have received considerable attention as environmental forces that impact organisms, populations and whole ecosystems. Only one ecosystem, the intertidal zone, experiences both MHWs and AHWs.
View Article and Find Full Text PDFACS Energy Lett
January 2025
Department of Physics, Technical University of Denmark, Kongens Lynby 2800, Denmark.
We discuss the challenges associated with achieving high energy efficiency in electrochemical ammonia synthesis at near-ambient conditions. The current Li-mediated process has a theoretical maximum energy efficiency of ∼28%, since Li deposition gives rise to a very large effective overpotential. As a starting point toward finding electrocatalysts with lower effective overpotentials, we show that one reason why Li and alkaline earth metals work as N reduction electrocatalysts at ambient conditions is that the thermal elemental processes, N dissociation and NH desorption, are both facile at room temperature for these metals.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
This study examines the viability of using graphitic-Carbon Nitride (g-CN) nanomaterial as shale stabilizer drilling fluid additive having applications in the oil and gas wells drilling. Shale stability is important especially when drilling horizontal and extended reach wells with water-based muds (WBM) to tap unconventional reservoirs namely shale oil and shale gas. For this study, the g-CN nanomaterial was produced by melamine pyrolysis, and characterized by X-Ray Diffraction, Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy techniques.
View Article and Find Full Text PDFSci Rep
January 2025
Renewable Energy Research Group, Isfahan, Iran.
The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!