GM(1)-gangliosidosis is a lysosomal storage disease that is inherited as an autosomal recessive disorder, predominantly caused by structural defects in the beta-galactosidase gene (GLB1). The molecular cause of GM(1)-gangliosidosis in Alaskan huskies was investigated and a novel 19-bp duplication in exon 15 of the GLB1 gene was identified. The duplication comprised positions +1688-+1706 of the GLB1 cDNA. It partially disrupted a potential exon splicing enhancer (ESE), leading to exon skipping in a fraction of the transcripts. Thus, the mutation caused the expression of two different mRNAs from the mutant allele. One transcript contained the complete exon 15 with the 19-bp duplication, while the other transcript lacked exon 15. In the transcript containing exon 15 with the 19-bp duplication a premature termination codon (PTC) appeared, but due to its localization in the last exon of canine GLB1, nonsense-mediated RNA decay (NMD) did not occur. As a consequence of these molecular events two different truncated GLB1 proteins are predicted to be expressed from the mutant GLB1 allele. In heterozygous carrier animals the wild-type allele produces sufficient amounts of the active enzyme to prevent clinical signs of disease. In affected homozygous dogs no functional GLB1 is synthesized and G(M1)-gangliosidosis occurs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1449761 | PMC |
http://dx.doi.org/10.1534/genetics.105.042580 | DOI Listing |
Mol Ther Nucleic Acids
March 2025
Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada.
Tay-Sachs disease is a fatal neurodegenerative disorder caused by mutations inactivating the metabolic enzyme HexA. The most common mutation is c.1278insTATC, a tandem 4-bp duplication disrupting expression by frameshift.
View Article and Find Full Text PDFGenes (Basel)
June 2023
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
J Pediatr Genet
June 2020
Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
Autosomal recessive type I cutis laxa is genetically heterogeneous. Biallelic mutations in latent transforming growth factor β-binding protein 4 (LTBP4; MIM*604710) lead to type 1C cutis laxa due to nonsense, frameshift, single base pair indels, or duplication mutations. In this report, we describe the first Indian family with cutis laxa as a result of a novel 19 base pair homozygous deletion leading to premature termination of short isoform LTBP-4S.
View Article and Find Full Text PDFCommun Biol
March 2020
College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
Long intergenic non-coding RNAs (lincRNAs) have been proved to be involved in regulating female reproduction. However, to what extent lincRNAs are involved in ovarian functions and fertility is incompletely understood. Here we show that a lincRNA, NORFA is involved in granulosa cell apoptosis, follicular atresia and sow fertility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!