Both homozygous (L166P, M26I, deletion) and heterozygous mutations (D149A, A104T) in the DJ-1 gene have been identified in Parkinson's disease (PD) patients. The biochemical function and subcellular localization of DJ-1 protein have not been clarified. To date the localization of DJ-1 protein has largely been described in studies over-expressing tagged DJ-1 protein in vitro. It is not known whether the subcellular localization of over-expressed DJ-1 protein is identical to that of endogenously expressed DJ-1 protein both in vitro and in vivo. To clarify the subcellular localization and function of DJ-1, we generated three highly specific antibodies to DJ-1 protein and investigated the subcellular localization of endogenous DJ-1 protein in both mouse brain tissues and human neuroblastoma cells. We have found that DJ-1 is widely distributed and is highly expressed in the brain. By cell fractionation and immunogold electron microscopy, we have identified an endogenous pool of DJ-1 in mitochondrial matrix and inter-membrane space. To further investigate whether pathogenic mutations might prevent the distribution of DJ-1 to mitochondria, we generated human neuroblastoma cells stably transfected with wild-type (WT) or mutant (M26I, L166P, A104T, D149A) DJ-1 and performed mitochondrial fractionation and confocal co-localization imaging studies. When compared with WT and other mutants, L166P mutant exhibits largely reduced protein level. However, the pathogenic mutations do not alter the distribution of DJ-1 to mitochondria. Thus, DJ-1 is an integral mitochondrial protein that may have important functions in regulating mitochondrial physiology. Our findings of DJ-1's mitochondrial localization may have important implications for understanding the pathogenesis of PD.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddi211DOI Listing

Publication Analysis

Top Keywords

dj-1 protein
28
dj-1
16
subcellular localization
16
protein
10
mitochondrial localization
8
parkinson's disease
8
localization dj-1
8
protein vitro
8
human neuroblastoma
8
neuroblastoma cells
8

Similar Publications

Background: DJ-1 is a protein whose mutation causes rare heritable forms of Parkinson's disease (PD) and is of interest as a target for treating PD and other disorders. This work used high performance affinity microcolumns to screen and examine the binding of small molecules to DJ-1, as could be used to develop new therapeutics or to study the role of DJ-1 in PD. Non-covalent entrapment was used to place microgram quantities of DJ-1 in an unmodified form within microcolumns, which were then used in multiple studies to analyze binding by model compounds and possible drug candidates to DJ-1.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by the formation of Lewy bodies, which are primarily composed of misfolded α-Synuclein (α-Syn). DJ-1 is a crucial protein involved in the correct folding of α-Syn, and mutations impairing its function are associated with the onset of PD. One such mutation, the L166P substitution in DJ-1, which has been linked to early-onset PD and results in the loss of DJ-1's homodimer structure.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how high glucose levels in diabetes lead to kidney cell damage through the activation of a signaling pathway involving DJ-1 and PTEN.
  • DJ-1 is found to be upregulated in kidney cells under high glucose conditions, which triggers the Akt/mTORC1 signaling pathway, resulting in cell growth and fibrosis.
  • The research indicates that inhibiting DJ-1 can prevent glucose-induced cell growth and damage, while overexpressing DJ-1 replicates the harmful effects, highlighting its role in renal injury related to diabetes.
View Article and Find Full Text PDF

DJ-1 as a Novel Therapeutic Target for Mitigating Myocardial Ischemia-Reperfusion Injury.

Cardiovasc Ther

January 2025

Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center Nanjing Medical University, Wuxi 214023, China.

Ischemic heart disease (IHD) remains one of the most prominent causes of mortality and morbidity globally, and the risk of ischemia-reperfusion injury is becoming more severe and constant. This underscores the need to develop new methods to protect the heart from damage. DJ-1 is a multifunctional intracellular protein encoded by the gene that plays roles in processes including the control of autophagy, the preservation of mitochondrial integrity, the prevention of apoptosis, and the elimination of oxidative stress.

View Article and Find Full Text PDF

Neuroblastoma shows the highest lethality in childhood and has poor prognosis at high grade. Our objectives included determining how retinoic acid affected the growth of neuroblastoma cells and the relationship between chemicals unique to neurons and cell death processes like apoptosis and mitophagy. The 50% inhibitory concentration of retinoic acid on SH-SY5Y neuroblastoma cells was determined at the 24th, 48th and 72nd hours.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!