The membrane-tethered mucins are cell surface-associated dimeric or multimeric molecules with extracellular, transmembrane and cytoplasmic portions, that arise from cleavage of the primary polypeptide chain. Following the first cleavage, which may be cotranslational, the subunits remain closely associated through undefined noncovalent interactions. These mucins all share a common structural motif, the SEA module that is found in many other membrane-associated proteins that are released from the cell surface and has been implicated in both the cleavage events and association of the subunits. Here we examine the SEA modules of three membrane-tethered mucins, MUC1, MUC3 and MUC12, which have significant sequence homology within the SEA domain. We previously identified the primary cleavage site within the MUC1 SEA domain as FRPG/SVVV a sequence that is highly conserved in MUC3 and MUC12. We now show by site-directed mutagenesis that the F, G and S residues are important for the efficiency of the cleavage reaction but not indispensable and that amino acids outside this motif are probably important. These data are consistent with a new model of the MUC1 SEA domain that is based on the solution structure of the MUC16 SEA module, derived by NMR spectroscopy. Further, we demonstrate that cleavage of human MUC3 and MUC12 occurs within the SEA domain. However, the SEA domains of MUC1, MUC3 and MUC12 are not interchangeable, suggesting that either these modules alone are insufficient to mediate efficient cleavage or that the 3D structure of the hybrid molecules does not adequately re-create an accessible cleavage site.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2005.04711.xDOI Listing

Publication Analysis

Top Keywords

muc3 muc12
16
sea domain
16
membrane-tethered mucins
12
sea
9
cleavage
9
sea module
8
muc1 muc3
8
cleavage site
8
muc1 sea
8
role sea
4

Similar Publications

Mucins (MUC1-MUC24) are a family of glycoproteins involved in cell signaling and barrier protection. They have been implicated in the progression of numerous malignancies including gastric, pancreatic, ovarian, breast, and lung cancer. Mucins have also been extensively studied with respect to colorectal cancer.

View Article and Find Full Text PDF

Discovery of a MUC3B gene reconstructs the membrane mucin gene cluster on human chromosome 7.

PLoS One

October 2022

Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.

Human tissue surfaces are coated with mucins, a family of macromolecular sugar-laden proteins serving diverse functions from lubrication to the formation of selective biochemical barriers against harmful microorganisms and molecules. Membrane mucins are a distinct group of mucins that are attached to epithelial cell surfaces where they create a dense glycocalyx facing the extracellular environment. All mucin proteins carry long stretches of tandemly repeated sequences that undergo extensive O-linked glycosylation to form linear mucin domains.

View Article and Find Full Text PDF

The Roles of Transmembrane Mucins Located on Chromosome 7q22.1 in Colorectal Cancer.

Cancer Manag Res

April 2021

Laboratory Medicine Department, Faculty of Applied Medical Science, Umm Al-Qura University, Makkah, 7607, Saudi Arabia.

Colorectal cancer (CRC) is one of the most common types of cancers. It is associated with a poor prognosis and high mortality. The role of mucins (MUCs) in colon tumorigenesis is unclear, but it might be significant in the progression of malignancy.

View Article and Find Full Text PDF

Membrane-bound mucins belong to a heterogeneous family of large O-glycoproteins involved in numerous cancers and inflammatory diseases of the epithelium. Some of them are also involved in protein-protein interactions, with receptor tyrosine kinase ErbB2, and fundamental and clinical data showed that these complexes have a detrimental impact on cancer outcome, thus raising interest in therapeutic targeting. This paper aims to demonstrate that MUC3, MUC4, MUC12, MUC13, and MUC17 have a common evolutionary origin and share a common structural organization with EGF-like and SEA domains.

View Article and Find Full Text PDF

Mucins as a New Frontier in Pulmonary Fibrosis.

J Clin Med

September 2019

Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.

Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pulmonary disease with a median survival of 3-5 years after diagnosis. Recent evidence identifies mucins as key effectors in cell growth and tissue remodeling processes compatible with the processes observed in IPF. Mucins are classified in two groups depending on whether they are secreted (secreted mucins) or tethered to cell membranes (transmembrane mucins).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!