Equilibrium folding of rat liver BHMT (betaine-homocysteine methyltransferase), a TIM (triosephosphate isomerase)-barrel tetrameric protein, has been studied using urea as denaturant. A combination of activity measurements, tryptophan fluorescence, CD and sedimentation-velocity studies suggested a multiphasic process including two intermediates, a tetramer (I4) and a monomer (J). Analysis of denaturation curves for single- and six-tryptophan mutants indicated that the main changes leading to the tetrameric intermediate are related to alterations in the helix alpha4 of the barrel, as well as in the dimerization arm. Further dissociation to intermediate J included changes in the loop connecting the C-terminal alpha-helix of contact between dimers, disruption of helix alpha4, and initial alterations in helix alpha7 of the barrel, as well as in the dimerization arm. Evolution of the monomeric intermediate continued through additional perturbations in helix alpha7 of the barrel and the C-terminal loop. Our data highlight the essential role of the C-terminal helix in dimer-dimer binding through its contribution to the increased stability shown by BHMT as compared with other TIM barrel proteins. The results are discussed in the light of the high sequence conservation shown by betaine-homocysteine methyltransferases and the knowledge available for other TIM-barrel proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1276960PMC
http://dx.doi.org/10.1042/BJ20050505DOI Listing

Publication Analysis

Top Keywords

rat liver
8
alterations helix
8
helix alpha4
8
barrel well
8
well dimerization
8
dimerization arm
8
helix alpha7
8
alpha7 barrel
8
helix
5
liver betaine-homocysteine
4

Similar Publications

Farnesol (FAR) is a sesquiterpene alcohol that exists in many fruits and vegetables and possesses promising anti-inflammatory and antioxidant activities. Cadmium (Cd) is an environmental pollutant known for its serious health effects. Liver injury associated with oxidative stress is a hazardous consequence of exposure to Cd.

View Article and Find Full Text PDF

Many of the 'hallmarks of aging' involve alterations in cellular and organismal metabolism. One pathway with the potential to impact several traditional markers of impaired function with aging is the PI3K/AKT metabolic pathway. Regulation of this pathway includes many aspects of cellular function, including protein synthesis, proliferation and survival, as well as many downstream targets, including mTOR and FOXOs.

View Article and Find Full Text PDF

Background: Recent reports suggest increased myocardial iNOS expression leads to excessive protein -nitrosylation, contributing to the pathophysiology of HFpEF. However, the relationship between NO bioavailability, dynamic regulation of protein -nitrosylation by trans- and de-nitrosylases, and HFpEF pathophysiology has not been elucidated. Here, we provide novel insights into the delicate interplay between NO bioavailability and protein -nitrosylation in HFpEF.

View Article and Find Full Text PDF

Acute rejection (AR) is a significant complication in liver transplantation, impacting graft function and patient survival. Kupffer cells (KCs), liver-specific macrophages, can polarize into pro-inflammatory M1 or anti-inflammatory M2 phenotypes, both of which critically influence AR outcomes. Angiopoietin-like 4 (ANGPTL4), a secretory protein, is recognized for its function in regulating inflammation and macrophage polarization.

View Article and Find Full Text PDF

Enhanced expression of Cyp17a1 and production of DHEA-S in the liver of late-pregnant rats.

Gen Comp Endocrinol

January 2025

Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.

Cytochrome P450 17A1 (CYP17A1) catalyzes two enzymatic reactions in the biosynthesis of dehydroepiandrosterone (DHEA) from pregnenolone. In pregnant humans, the adrenal gland is responsible for DHEA biosynthesis, which is then sulfated by SULT2A1 and released into the bloodstream. This sulfated DHEA is subsequently taken up by the placenta and deconjugated to serve as a precursor for estrogen biosynthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!