Nanometer patterning with ice.

Nano Lett

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

Published: June 2005

AI Article Synopsis

  • Nanostructures can be created by using focused electron or ion beams on stable, thin films of water ice deposited on silicon.
  • These patterns enable the fabrication of very narrow metal lines (less than 20 nm) and precise chemical surface changes (below 10 nm).
  • The study suggests that solid-phase condensed gases with low sublimation energy, like water ice, are excellent materials for nanoscale patterning.

Article Abstract

Nanostructures can be patterned with focused electron or ion beams in thin, stable, conformal films of water ice grown on silicon. We use these patterns to reliably fabricate sub-20 nm wide metal lines and exceptionally well-defined, sub-10 nanometer beam-induced chemical surface transformations. We argue more generally that solid-phase condensed gases of low sublimation energy are ideal materials for nanoscale patterning, and water, quite remarkably, may be among the most useful.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1432218PMC
http://dx.doi.org/10.1021/nl050405nDOI Listing

Publication Analysis

Top Keywords

nanometer patterning
4
patterning ice
4
ice nanostructures
4
nanostructures patterned
4
patterned focused
4
focused electron
4
electron ion
4
ion beams
4
beams thin
4
thin stable
4

Similar Publications

Nanoparticles of highly porous metal-organic frameworks (MOFs) are some of the most exciting nanomaterials under development, with potential applications that range from biomedicine and catalysis to adsorption technologies. However, our synthetic methodologies to functionalize and manipulate MOF nanoparticles (NPs) are less well developed than they might be. Here we create MOF NPs derivatized with hydrazone units on their exterior, enabling chemospecific reversible dynamic covalent modification of structures on the external surface.

View Article and Find Full Text PDF

Time-resolved Brownian tomography of single nanocrystals in liquid during oxidative etching.

Nat Commun

January 2025

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.

Colloidal nanocrystals inherently undergo structural changes during chemical reactions. The robust structure-property relationships, originating from their nanoscale dimensions, underscore the significance of comprehending the dynamic structural behavior of nanocrystals in reactive chemical media. Moreover, the complexity and heterogeneity inherent in their atomic structures require tracking of structural transitions in individual nanocrystals at three-dimensional (3D) atomic resolution.

View Article and Find Full Text PDF

Biological activities observed in living systems occur as the output of which nanometer-, submicrometer-, and micrometer-sized structures and tissues non-linearly and dynamically behave through chemical reaction networks, including the generation of various molecules and their assembly and disassembly. To understand the essence of the dynamic behavior in living systems, simpler artificial objects that exhibit cell-like non-linear phenomena have been recently constructed. However, most objects exhibiting cell-like dynamics have been found through trial-and-error experiments, and there are no strategies for designing them as molecular systems.

View Article and Find Full Text PDF

Aim: Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery.

Method: A 3 Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties.

View Article and Find Full Text PDF

In previous work, we introduced a structured illumination strategy using linear gratings to achieve sub-nanometer misalignment sensing, which significantly enhanced accuracy and sensitivity. However, the approach was limited to linear gratings, as maintaining consistent fringe patterns during interference and modulation is essential for precise alignment. To overcome this limitation, we propose qhat we believe to be a novel misalignment sensing method based on cascaded interference in polar coordinates, enabling the use of sub-wavelength circular gratings for sub-nanometer alignment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!